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In this paper, a method of diminishing computational reduction to improve Wilson's primality test
method is proposed. Basically, the RSA algorithm entails a modular exponentiation operation on large 
integers, which is considerably time-consuming to implement. Since ancient time, number theory has 
been an important study subject and modular arithmetic has also been widely used in cryptography. The
Wilson’s primality test method is one of the most well-known deterministic prime number test methods. 
It states that n is a prime number if and only if ( 1)! 1modn n   . In this paper, we compare two primality 

test algorithms for implementing the Wilson’s method, which need 1
2*[( )!]

2

n and 2

2(log )n n

multiplications, respectively. However, by using the proposed reduction algorithm, only 1 1
*[1 ( ) ] 1

2 2
kn 

 

multiplications are needed for the Wilson’s primality test method, where 
2

1
log

2

n
k

   
and the “n” means a 

prime number. The proposed computational reduction method can efficiently perform Wilson’s 
deterministic primality test, and it is faster than other proposed methods. By using the proposed method, 
it can not only reduce the overall computational complexity of the original Wilson’s primality test 
method but also reduce the computational space.

Povzetek: Opisana je metoda redukcije za moderne kriptografske sisteme.

1 Introduction
Modular exponentiation (ME) is the cornerstone 
computations performed in public-key cryptosystems. 
Taking the RSA cryptosystem [1] for example, the public 
and private keys are functions of a pair of large prime 
numbers, and the encryption and decryption operations 
are accomplished by modular exponentiation.

This modular exponentiation problem can be 
described as follows. Given M (message), E (public key), 
and N (the product of two large primes), compute 
ciphertext C ≡ ME mod N. For the computation of 
modular exponentiation, the very intuitive way is to 
break the modular exponentiation operation into a series 
of modular multiplications. 

Meganet corporation [2] has announced its 13-year 
research results in the prime number testing area. 
Meganet corporation has implemented the algorithm in 
an ANSI C application running on a single CPU 450 

MHZ PC. Some results of Meganet corporation are 
depicted in Table 1.

Wilson's primality test method states that n is a 
prime number if and only if ( 1)! 1modn n   . In this 
paper we compare two algorithms by its multiplication 
numbers for implementing the Wilson’s primality 

method: Naccache-Donio’s needs 
1

2*[( )!]
2

n 

multiplications from a little trick about factories [3] and 
Rosen’s method needs 2

2[ (log ) ]n n multiplications [4-9].
To design a fast primality test for finding a prime 

number is necessary and very important. We apply a 
method based on the modular arithmetic to advance the 
Wilson’s primality test. The motivation of this paper is to 
reduce the numbers of multiplication, modular 
multiplication, and square. Besides, we will describe how 
to have a better space usage by using the proposed 
method.
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The paper is organized as follows. In Section 2 we 
describe modern primality test methods such as 
probabilistic and deterministic primality test methods. 
The Wilson’s primality test method and some 
mathematical preliminaries are introduced in Section 3, 
and the proposed method using modular arithmetic is 
described in details. In Section 4 we analyze the 
computational complexity and area usage for our 
proposed improved Wilson’s primality test method and 
compare the performance with Naccache-Donio’s 
method [3] and Rosen’s method [4-9]. In Section 5 we 
draw some figures and tables to compare the above 
different methods.

Table 1. Experiments of Meganet corporation.
Bit number of the 

primality test
Time (in second)

1,000 0.5
2,000 1
3,000 3
4,000 8
5,000 15
6,000 26
7,000 41
8,000 62
9,000 87

10,000 118

2 Modern primality test methods
For the modern primality test theory [10-15], two fields 
of test methods have been published. They can enhance 
the security in public key cryptosystem such as 
probabilistic primality tests and deterministic primality 
tests. They are Solovay-Strassen, Lehman, Lucas, Miller-
Rabin methods and so on, which have been issued in the 
probabilistic primality test field [16, 17]. We also have 
other primality test papers which have been issued in the 
deterministic test field [18-20] such as Demytko, Wilson, 
Proth methods etc.

2.1 Probabilistic primality test methods

2.1.1Fermat probabilistic primality test method:

This theorem assures us that if n is a prime number 
then 1 1modnb n  for every integer b co-prime to n. In
contrast, if n is a composite number, it is quite rare for 
the above congruence to be satisfied with b.

2.1.2Lucas probabilistic primality test method:

For any two nonzero integers, this equation is 
2 4 0D a b   . We define Lucas sequence as

k k

kU
 
 



 , 

for 0k  , and  ,  are two roots of the equation 
2 0x ax b   . If p is a prime number, p cannot divide 

b, and p will satisfy this equation 1
D

p
  , where 

D

p
is 

Jacobi symbol. We can get p |Up+1. So we use this 
principle to presume that if n is a positive odd number 

and n can not divide Un+1, then n is a composite 
number.
2.1.3 Miller-Rabin probabilistic primality test method:

Given a positive odd integer n and let 2 1rn s  , 
where s is an odd number. Then follow the testing 
numbers: choose a random positive integer a with 
1 1a n   . If 1modsa n or 12 s

j

a mod N for some 
0 1j r   , then n passes the test. A prime number will 
pass the test for all a.

2.2 Deterministic primality test methods
Compared with probabilistic primality test methods, the 
output results of deterministic primality test methods are
absolutely correct. In other words, when a positive odd 
number is tested, the output result has only two possible 
situations by using deterministic primality test methods. 
Either this number is a prime number or this number is a 
composite number. By using this method, the found 
number can be assumed as whether this number is a 
prime number or not.

2.2.1 Demytko deterministic primality test method: 

If “ 1 * 1i i ip h p   ” meets the four following 
conditions, then pi+1 is sure to be a prime number.
(a) Input a positive odd prime number pi . Let it be 

regarded as a seed generating prime number. We also
look for them by using Look-Up Table (LUT) or 
other primality test methods.

(b) For hi<4(pi+1) Hi, hi is an even number, so we must 
use all of the even numbers from 2 to hi during the 
test procedures.

(c)
12 1modh pi i

ip  .

(d)
12 1modhi

ip  .

2.2.2 Wilson deterministic primality test method: 

If and only if n is a prime number, then (n-1)! +1 is a 
multiple of n, that is

( 1)! 1mod  n n .

This theorem was proposed by John Wilson and 
published by Edward Waring in 1770 though it was 
previously known for Leibniz [19]. It was proved by 
Lagrange [20] in 1773. Unlike the Fermat probabilistic 
primality test method, the Wilson's theorem is not only
necessary but also sufficient for the primality test.

2.2.3 Proth deterministic primality test method:

For *2 1nN k  with k odd and 2n k , if there 
exists an integer  such that

1
( )

2 1mod
N

N


  ,

then N is prime.
The difference between probabilistic primality test 

methods and deterministic primality test methods is that 
the result of the later methods can be precisely accurate.
Namely, we are sure the number we calculate is a prime 
number.
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3 Wilson’s primality test method
Number theory has played an important role in the public 
key cryptosystems [7, 21]. In this section we will review 
modular arithmetic in number theory. Then we will 
introduce the proposed improved primality test method.

3.1 Mathematical preliminaries
As what is introduced in the above section, the Wilson’s 
primality test method could provide an absolutely correct 
result, but it needs too much space and time if we 
calculate the “n!” directly. If our proposed algorithm is 
not used for Wilson’s primality test method, it will need 
enormous operation digits and take much time. For 
example, when the number n = 1,597, it can nearly 
produce 4,500 digits decimal number result. More tests 
are shown in Table 2.

In this section, we review some definitions and 
theorems [21] which are well-suited for our proposed 
primality test method.

Theorem 1:

If a, b, c, and m are integers with m > 0 so that 
moda b m , then

(a) ( ) mod [( mod ) ( mod )]moda b m a m b m m   ,

(b) ( ) mod [( mod ) ( mod )]moda b m a m b m m   ,

(c) ( * ) mod [( mod )*( mod )]moda b m a m b m m ,

(d) mcbca mod)()(  ,

(e) mcbca mod)()(  ,

(f) mcbca mod)*()*(  .

Theorem 2:

If 1 2mod , mod ,..., mod ka b m a b m a b m   , where a, b, 
m1, m2, …, mk are integers with m1, m2, …, mk 
positive, then 1 2mod[ , ,..., ]ka b m m m , where [m1, m2, …, 
mk] is the least common multiple of m1, m2, …, mk.

Theorem 3:

A geometric series k ka is a series for which the ratio 

of each two consecutive terms 1k

k

a

a
 is a constant function of 

the summation index k. For the case of the 

ratio 1k

k

a
r

a
  equals to a constant r, the terms ka are the 

form k

ka ar . Sn is a summation of 
2 3 ... na ar ar ar ar     .

2 3

0
...

n
k n

n
k

S ar a ar ar ar ar

                             (1)                                                                              

Multiplying both sides by r gives
2 3 1

0
...

n
k n n

n
k

rS r ar ar ar ar ar ar 


                         (2)                                                                                      

and subtracting (2) from (1)

gives
1(1 ) n

nr S a ar    ,
so

1(1 )

1

n

n

a r
S

r





                                                           (3)                                                                                                                                                    

Theorem 4:

If ( * ) ( * ) mod , moda c b d m c d m  , and (c, m) = 1, 
then moda b m where (c, m) represents the greatest 
common divisor. (c, m) = 1 means they don’t have any 
factors between c and m except 1.

Definition:

A complete system of residues modulo m is a set of 
integers so that every integer is congruence modulo m to 
exactly one integer of the set.

Table 2. Comparison decimal digits.

Test 
number

The decimal 
digits of test 

number

Decimal digits in 
original Wilson's 

primality test 
method (n-1)!

Decimal digits in 
the proposed 

Wilson's primality 
test method

97 2 150 4

127 3 212 5

251 3 493 5

367 3 781 6

499 3 1,129 6

541 3 1,243 6

677 3 1,622 6

727 3 1,764 6

877 3 2,200 6

977 3 2,496 6

1,009 4 2,592 7

1,103 4 2,876 7

1,213 4 3,213 7

1,301 4 3,486 7

1,423 4 3,868 7

1,597 4 4,421 7

3.2 Improved Wilson’s primality test 
method

The Wilson’s primality test method is described as:
( 1)! 1modn n   ,                                             

(4)
where n represents a prime number.

It can be written as:
[( 1)*( 2)*( 3)*( 4)*( 5)*( 6)*( 7)*...*5*4*3*2*1] 1modn n n n n n n n        (5

)
Equations (5) can be rewritten in details as 

following:
1 1 1 1

[( 1)( 2)*...*( 2)*( 1)*( )*( 1)*...*5*4*3*2*1] 1mod
2 2 2 2

n n n n
n n n

   
       (6

)
The following equations are based on [4] following:

1mod ,m m i iX b r X X X   , i = 1, 3, …, m-1 where m, i, 
and r represent each integer.                                          
(7)

1[ ( mod )]mod modi iX X r r b r  , i = 1, 3, .., m-1 where 
m, i, and r represent each integer.                                   
(8)
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If moda b m , then ( ) moda m b m                        
(9)                                                 

Based on Equation (9), we subtract n from item (n-1)

to item 
1

1
2

n 


, and other items remain the same in 
Equation (6) to obtain Equation (10) as follows.

1 1 1
{[( 1) ][( 2) ]*...*[( 2) ]*[( 1) ]*( )*...*2*1} 1mod

2 2 2

n n n
n n n n n n n

  
            

(10)
The result of Equation (10) can be rewritten as:

3 1 1 3
[( 1)*( 2)*( 3)*...*( )*( )*( )*( )*...*5*4*3*2*1] 1mod

2 2 2 2

n n n n
n

   
          

(11)
Because n is an odd number, we can skip the minus 

symbol, and Equation (11) can be transformed to be:
23 1

[1* 2*3*4*5...*( )*( )] 1mod
2 2

n n
n

 
                       

(12)
In other words, we can recompose the original 

Wilson’s primality test method [Equation (4)] as 
Equation (12).

Based on Equation (8), Equation (12) can be 
recomposed as follows.

23 1
{[(1*2) mod ][(3*4) mod ]*...*[( * ) mod ]} mod 1mod

2 2

n n
n n n n n

 
  (13

)
Based on Equation (13), we can now process each 

item in our proposed Wilson’s primality test method, 
which involves multiplications and modulus inside each 
square bracket entry. Then we can square them in the last 
step. At last we use this modulus n to get the final result.

The proposed method is depicted as follows. These 
items inside the square bracket entries in Equation (12) 
can be represented in the following form:

' ' 1 1 2 3 4 5 6 7 1 1
1

2 2

* * * * * * *...* *k k n nA A A A A A A A A A A  


  ; k’ = 1, 3, 5, 7, 

9, …..., 
1

1
2

n 
 .

Hence, Equation (13) can also be represented by 
using a different form as follows.

' ' 1 1 2 3 4 1 1
1

2 2

( ) mod [( * ) mod ]*[( * ) mod ]*...*[( * ) mod ]k k n nA A n A A n A A n A A n  


 

,for k’ = 1,3,5,7,9, ……, 
1

1
2

n
                                      

(14)                                            
In this modification, based on the fundamental 

modular arithmetic, we need some variables during the 
following computational procedures to solve Equation 
(12).

a = 1, 3, 5, 7, 9, ……, ( 



 

4

1n
-1),

b = 1, 3, 5, 7, 9, ……, ( 



 

8
1n -1),



k’ = 1, 3, 5, 7, 9, ……, ( 1

1
1

2k

n


    
),

k =1, 2, 3, 4, 5, ……, 



 

2

1
log2

n
.

Here we use the following procedures to evaluate 
Equation (12).

The first procedure:

1 ' ' 1 moda k kA A A n

1 2 3 4 1 1
1

2 2

[( * ) mod ]*[ * ) mod ]*...*[( * ) mod ]n nA A n A A n A A n 


     (15)

The second procedure:

2 1 1( 1) modb a aA A A n

11 12 13 14 1 1
1( 1) 1( )

4 4

[( * ) mod ]*[ * ) mod ]*...*[( * ) mod ]
n n

A A n A A n A A n
          

 (16)


The kth procedure:

' ( 1) ' ( 1)( ' 1) modkk k k k kA A A n  
( 1)1 ( 1)2 ( 1)3 ( 1)4 1 1

( 1)( 1) ( 1)( )
2 2

[( * ) mod ]*[ * ) mod ]*...*[( * ) mod ]k k k k n n
k k

k k

A A n A A n A A n        
     

      

 (17)
The final procedure:
We assure 2

'( ) modkkB A n                                    (18)
If B = -1, n is a prime number.
If B  -1, n is a composite number.
Complexity analyses
Now we generalize the above procedures from 

Equation (15) to Equation (18), and analyze the 
complexity of the proposed algorithm in detail as 
follows.

The first procedure:

( 



 

4

1n -1) modular multiplications are needed to 

evaluate Equation (15).
The second procedure:

( 



 

8

1n -1) modular multiplications are needed to 

evaluate Equation (16).

The kth procedure:

( 1

1
1

2k

n


    
) modular multiplications are needed to 

evaluate Equation (17).
In the above procedures, we proceed k’ numbers for 

each procedure, where

k’ = 1, 3, 5, 7, 9, ……, ( 1

1
1

2k

n


     ),

and we need to execute k procedures, where

k =1, 2, 3, 4, 5, ……, 



 

2

1
log2

n .

The final procedure:
One modular square is needed to evaluate Equation 

(18).
To simplify the discussions in this paper, the 

modular operation is ignored and only the multiplication 
and the square are referred to [20, 23]. So we can sum up 
the computational amounts (the number of modular 
multiplication and modular square) in all of the above 
procedures below.

1

1 1 1 1 1 1
( 1) ( 1) ( 1) ( 1) ( 1) ... ( 1) 1

4 8 16 32 64 2k

n n n n n n


                                                   (19)

where k = 1, 2, 3, …, 



 

2

1
log2

n

We rearrange the above equation as follows.

1

1 1 1 1 1
[( 1 1) ( 1 1) ( 1 1) ( 1 1) ... ( 1 1)] 1

4 8 16 32 2k

n n n n n


    
                (20

)
where “+1” inside each parenthesis means we get the 

maximum for each item, which marks ceiling symbol in 

Equation (19).

Based on Theorem 3, we calculate Equation (20) to 
obtain the final result as follows.

1 1
*( 1)*[1 ( ) ] 1

2 2
kn    , where 2

1
log

2

n
k

    
.                  

(21)
The original Wilson’s primality test method is (n-1)!

≡ -1 mod n. From Table 2, we know the larger the test 
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number is, the larger the decimal-digit size is. However, 
by using the proposed algorithm, the maximum decimal-
digit size is generated by the (n-1)*(n-2) item. Note, this 
item should be bounded to 2q if we assume that the test 
number “n” has q decimal-digit size. Some experimental
results are shown in Table 2.

4 Example
Let us take n = 29 to depict our proposed Wilson’s 
primality test method and show the correctness of the 
proposed method. The Wilson’s primality test method is 
based on Equation (4):

( 1)! 1modn n   , where n represents a prime 
number. Based on Equation (5) to Equation (6), and 
Equation (10) to Equation (12), the original Wilson’s 
primality test method can be changed as follows.

2(1*2*3*4*5*6*...*11*12*13*14) mod 29 1mod 29 
(22)

Based on Equation (8) and Equation (22), our 
proposed method executes basically the following steps:

The first step,
2{[(1*2) mod 29]*[(3*4) mod 29]*...*[(11*12) mod 29]*[(13*14)mod 29]} mod 29 1mod 29 

 2{[2*12*1*27*3*16*8]mod 29} mod 29 1mod 29  .
The second step,

2{[(2*12)mod29]*[(1*27) mod29]*[(3*16) mod29]*[(8)mod29]} mod29 1mod29 

 2{[24*27*19*8]mod 29} mod 29 1mod 29  .
The third step,

2{[(24*27) mod 29]*[(19*8) mod 29]} mod 29 1mod 29 

 2{[10*7]mod 29} mod 29 1mod 29  .
The fourth step,

2{[10*7]mod29} mod29 1mod29 

 2{12mod 29} mod 29 1mod 29  .
The fifth step,

2{12} mod 29 1mod 29 

{144mod 29} 1mod29  .
From the first step to the fifth step, the proposed 

Wilson’s primality test method requires 7, 4, 2, 1 
modular multiplication and one modular square, 
respectively. To sum up, the whole evaluation of the 
proposed Wilson’s primality test method requires 14 
modular multiplications and one modular square.

5 Conclusions and future works
In this paper, we apply modular arithmetic to improve 
the original Wilson’s primality test method for reducing
the computational complexity and getting a better area 
usage. Compared these criterions depicted in [3] [4] with 
the proposed algorithm in this paper, we can clearly 
understand that the test number “n” becomes larger and 
the other two methods will require much space and time 
as shown in Figure 1 and Table 3. They become 
infeasible. By using our proposed algorithm, even though 
n grows larger, the space and time we require can be still 
under control and save much more.

In the future, we will try to further effectively 
improve the Wilson’s primality test method by 
transforming integer n from decimal number system into 
binary system [21, 27, 28] and reduce the redundant 
computational complexity [29-31]. Secondly, starting

from many studies emphasized in this field [32-33], we 
will further study and search for more efficient methods 
and useful mathematical theorem to speed up the 
Wilson’s primality test method. To sum up, we can 
therefore perform this deterministic primality test method 
more effectively when applying it in modern 
cryptosystem.
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Figure 1. Complexity comparisons between Naccache-
Donio’s method and the proposed method.

Table 3. Complexity comparisons using smaller test 
number “n”.

n Naccache-Donio’s 
method

Rosen’s 
method

The proposed 
method

3 2 22.6 2

5 4 26.96 2.5

7 12 55.17 3

11 240 131.64 6.25

17 80,640 284.02 8.875

19 725,760 342.85 10.375

23 79,833,600 470.64 12.25

29 174,356,582,400 684.399 15.0625

Naccache-Donio’s method:
1

2*[( )!]
2

n 
.

Rosen’s method: 2

2[ (log ) ]n n .

The proposed method:
1 1

*[1 ( ) ] 1
2 2

kn 
  ,where 2

1
log

2

n
k

     .
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