
Informatica 33 (2009) 453-458 453

Computational Reduction of Wilson's Primality Test for Modern
Cryptosystems

Chia-Long Wu
Department of Aviation & Communication Electronics, Chinese Air Force Institute of Technology
Kaohsiung, Taiwan, R.O.C.
E-mail: chialongwu@seed.net.tw

Der-Chyuan Lou and Te-Jen Chang
Department of Electrical Engineering, Chung Cheng Institute of Technology, National Defense University
Taoyuan, Taiwan, R.O.C.
E-mail: {dclouprof, karl591218}@gmail.com

Keywords: information security, cryptography, modular arithmetic, primality test, number theory

Received: March 18, 2008

In this paper, a method of diminishing computational reduction to improve Wilson's primality test
method is proposed. Basically, the RSA algorithm entails a modular exponentiation operation on large
integers, which is considerably time-consuming to implement. Since ancient time, number theory has
been an important study subject and modular arithmetic has also been widely used in cryptography. The
Wilson’s primality test method is one of the most well-known deterministic prime number test methods.
It states that n is a prime number if and only if (1)! 1modn n   . In this paper, we compare two primality

test algorithms for implementing the Wilson’s method, which need 1
2*[()!]

2

n and 2

2(log)n n

multiplications, respectively. However, by using the proposed reduction algorithm, only 1 1
*[1 ()] 1

2 2
kn 

 

multiplications are needed for the Wilson’s primality test method, where
2

1
log

2

n
k

   
and the “n” means a

prime number. The proposed computational reduction method can efficiently perform Wilson’s
deterministic primality test, and it is faster than other proposed methods. By using the proposed method,
it can not only reduce the overall computational complexity of the original Wilson’s primality test
method but also reduce the computational space.

Povzetek: Opisana je metoda redukcije za moderne kriptografske sisteme.

1 Introduction
Modular exponentiation (ME) is the cornerstone
computations performed in public-key cryptosystems.
Taking the RSA cryptosystem [1] for example, the public
and private keys are functions of a pair of large prime
numbers, and the encryption and decryption operations
are accomplished by modular exponentiation.

This modular exponentiation problem can be
described as follows. Given M (message), E (public key),
and N (the product of two large primes), compute
ciphertext C ≡ ME mod N. For the computation of
modular exponentiation, the very intuitive way is to
break the modular exponentiation operation into a series
of modular multiplications.

Meganet corporation [2] has announced its 13-year
research results in the prime number testing area.
Meganet corporation has implemented the algorithm in
an ANSI C application running on a single CPU 450

MHZ PC. Some results of Meganet corporation are
depicted in Table 1.

Wilson's primality test method states that n is a
prime number if and only if (1)! 1modn n   . In this
paper we compare two algorithms by its multiplication
numbers for implementing the Wilson’s primality

method: Naccache-Donio’s needs
1

2*[()!]
2

n 

multiplications from a little trick about factories [3] and
Rosen’s method needs 2

2[(log)]n n multiplications [4-9].
To design a fast primality test for finding a prime

number is necessary and very important. We apply a
method based on the modular arithmetic to advance the
Wilson’s primality test. The motivation of this paper is to
reduce the numbers of multiplication, modular
multiplication, and square. Besides, we will describe how
to have a better space usage by using the proposed
method.

454 Informatica 33 (2009) 453–458 C.-L. Wu et al.

The paper is organized as follows. In Section 2 we
describe modern primality test methods such as
probabilistic and deterministic primality test methods.
The Wilson’s primality test method and some
mathematical preliminaries are introduced in Section 3,
and the proposed method using modular arithmetic is
described in details. In Section 4 we analyze the
computational complexity and area usage for our
proposed improved Wilson’s primality test method and
compare the performance with Naccache-Donio’s
method [3] and Rosen’s method [4-9]. In Section 5 we
draw some figures and tables to compare the above
different methods.

Table 1. Experiments of Meganet corporation.
Bit number of the

primality test
Time (in second)

1,000 0.5
2,000 1
3,000 3
4,000 8
5,000 15
6,000 26
7,000 41
8,000 62
9,000 87

10,000 118

2 Modern primality test methods
For the modern primality test theory [10-15], two fields
of test methods have been published. They can enhance
the security in public key cryptosystem such as
probabilistic primality tests and deterministic primality
tests. They are Solovay-Strassen, Lehman, Lucas, Miller-
Rabin methods and so on, which have been issued in the
probabilistic primality test field [16, 17]. We also have
other primality test papers which have been issued in the
deterministic test field [18-20] such as Demytko, Wilson,
Proth methods etc.

2.1 Probabilistic primality test methods

2.1.1Fermat probabilistic primality test method:

This theorem assures us that if n is a prime number
then 1 1modnb n  for every integer b co-prime to n. In
contrast, if n is a composite number, it is quite rare for
the above congruence to be satisfied with b.

2.1.2Lucas probabilistic primality test method:

For any two nonzero integers, this equation is
2 4 0D a b   . We define Lucas sequence as

k k

kU
 
 



 ,

for 0k  , and  ,  are two roots of the equation
2 0x ax b   . If p is a prime number, p cannot divide

b, and p will satisfy this equation 1
D

p
  , where

D

p
is

Jacobi symbol. We can get p |Up+1. So we use this
principle to presume that if n is a positive odd number

and n can not divide Un+1, then n is a composite
number.
2.1.3 Miller-Rabin probabilistic primality test method:

Given a positive odd integer n and let 2 1rn s  ,
where s is an odd number. Then follow the testing
numbers: choose a random positive integer a with
1 1a n   . If 1modsa n or 12 s

j

a mod N for some
0 1j r   , then n passes the test. A prime number will
pass the test for all a.

2.2 Deterministic primality test methods
Compared with probabilistic primality test methods, the
output results of deterministic primality test methods are
absolutely correct. In other words, when a positive odd
number is tested, the output result has only two possible
situations by using deterministic primality test methods.
Either this number is a prime number or this number is a
composite number. By using this method, the found
number can be assumed as whether this number is a
prime number or not.

2.2.1 Demytko deterministic primality test method:

If “ 1 * 1i i ip h p   ” meets the four following
conditions, then pi+1 is sure to be a prime number.
(a) Input a positive odd prime number pi . Let it be

regarded as a seed generating prime number. We also
look for them by using Look-Up Table (LUT) or
other primality test methods.

(b) For hi<4(pi+1) Hi, hi is an even number, so we must
use all of the even numbers from 2 to hi during the
test procedures.

(c)
12 1modh pi i

ip  .

(d)
12 1modhi

ip  .

2.2.2 Wilson deterministic primality test method:

If and only if n is a prime number, then (n-1)! +1 is a
multiple of n, that is

(1)! 1mod  n n .

This theorem was proposed by John Wilson and
published by Edward Waring in 1770 though it was
previously known for Leibniz [19]. It was proved by
Lagrange [20] in 1773. Unlike the Fermat probabilistic
primality test method, the Wilson's theorem is not only
necessary but also sufficient for the primality test.

2.2.3 Proth deterministic primality test method:

For *2 1nN k  with k odd and 2n k , if there
exists an integer  such that

1
()

2 1mod
N

N


  ,

then N is prime.
The difference between probabilistic primality test

methods and deterministic primality test methods is that
the result of the later methods can be precisely accurate.
Namely, we are sure the number we calculate is a prime
number.

COMPUTATIONAL REDUCTION OF WILSON'S... Informatica 33 (2009) 453–458 455

3 Wilson’s primality test method
Number theory has played an important role in the public
key cryptosystems [7, 21]. In this section we will review
modular arithmetic in number theory. Then we will
introduce the proposed improved primality test method.

3.1 Mathematical preliminaries
As what is introduced in the above section, the Wilson’s
primality test method could provide an absolutely correct
result, but it needs too much space and time if we
calculate the “n!” directly. If our proposed algorithm is
not used for Wilson’s primality test method, it will need
enormous operation digits and take much time. For
example, when the number n = 1,597, it can nearly
produce 4,500 digits decimal number result. More tests
are shown in Table 2.

In this section, we review some definitions and
theorems [21] which are well-suited for our proposed
primality test method.

Theorem 1:

If a, b, c, and m are integers with m > 0 so that
moda b m , then

(a) () mod [(mod) (mod)]moda b m a m b m m   ,

(b) () mod [(mod) (mod)]moda b m a m b m m   ,

(c) (*) mod [(mod)*(mod)]moda b m a m b m m ,

(d) mcbca mod)()( ,

(e) mcbca mod)()( ,

(f) mcbca mod)*()*( .

Theorem 2:

If 1 2mod , mod ,..., mod ka b m a b m a b m   , where a, b,
m1, m2, …, mk are integers with m1, m2, …, mk
positive, then 1 2mod[, ,...,]ka b m m m , where [m1, m2, …,
mk] is the least common multiple of m1, m2, …, mk.

Theorem 3:

A geometric series k ka is a series for which the ratio

of each two consecutive terms 1k

k

a

a
 is a constant function of

the summation index k. For the case of the

ratio 1k

k

a
r

a
  equals to a constant r, the terms ka are the

form k

ka ar . Sn is a summation of
2 3 ... na ar ar ar ar     .

2 3

0
...

n
k n

n
k

S ar a ar ar ar ar

       (1)

Multiplying both sides by r gives
2 3 1

0
...

n
k n n

n
k

rS r ar ar ar ar ar ar 


       (2)

and subtracting (2) from (1)

gives
1(1) n

nr S a ar    ,
so

1(1)

1

n

n

a r
S

r





 (3)

Theorem 4:

If (*) (*) mod , moda c b d m c d m  , and (c, m) = 1,
then moda b m where (c, m) represents the greatest
common divisor. (c, m) = 1 means they don’t have any
factors between c and m except 1.

Definition:

A complete system of residues modulo m is a set of
integers so that every integer is congruence modulo m to
exactly one integer of the set.

Table 2. Comparison decimal digits.

Test
number

The decimal
digits of test

number

Decimal digits in
original Wilson's

primality test
method (n-1)!

Decimal digits in
the proposed

Wilson's primality
test method

97 2 150 4

127 3 212 5

251 3 493 5

367 3 781 6

499 3 1,129 6

541 3 1,243 6

677 3 1,622 6

727 3 1,764 6

877 3 2,200 6

977 3 2,496 6

1,009 4 2,592 7

1,103 4 2,876 7

1,213 4 3,213 7

1,301 4 3,486 7

1,423 4 3,868 7

1,597 4 4,421 7

3.2 Improved Wilson’s primality test
method

The Wilson’s primality test method is described as:
(1)! 1modn n   ,

(4)
where n represents a prime number.

It can be written as:
[(1)*(2)*(3)*(4)*(5)*(6)*(7)*...*5*4*3*2*1] 1modn n n n n n n n        (5

)
Equations (5) can be rewritten in details as

following:
1 1 1 1

[(1)(2)*...*(2)*(1)*()*(1)*...*5*4*3*2*1] 1mod
2 2 2 2

n n n n
n n n

   
       (6

)
The following equations are based on [4] following:

1mod ,m m i iX b r X X X   , i = 1, 3, …, m-1 where m, i,
and r represent each integer.
(7)

1[(mod)]mod modi iX X r r b r  , i = 1, 3, .., m-1 where
m, i, and r represent each integer.
(8)

456 Informatica 33 (2009) 453–458 C.-L. Wu et al.

If moda b m , then () moda m b m 
(9)

Based on Equation (9), we subtract n from item (n-1)

to item
1

1
2

n 


, and other items remain the same in
Equation (6) to obtain Equation (10) as follows.

1 1 1
{[(1)][(2)]*...*[(2)]*[(1)]*()*...*2*1} 1mod

2 2 2

n n n
n n n n n n n

  
         

(10)
The result of Equation (10) can be rewritten as:

3 1 1 3
[(1)*(2)*(3)*...*()*()*()*()*...*5*4*3*2*1] 1mod

2 2 2 2

n n n n
n

   
    

(11)
Because n is an odd number, we can skip the minus

symbol, and Equation (11) can be transformed to be:
23 1

[1* 2*3*4*5...*()*()] 1mod
2 2

n n
n

 
 

(12)
In other words, we can recompose the original

Wilson’s primality test method [Equation (4)] as
Equation (12).

Based on Equation (8), Equation (12) can be
recomposed as follows.

23 1
{[(1*2) mod][(3*4) mod]*...*[(*) mod]} mod 1mod

2 2

n n
n n n n n

 
  (13

)
Based on Equation (13), we can now process each

item in our proposed Wilson’s primality test method,
which involves multiplications and modulus inside each
square bracket entry. Then we can square them in the last
step. At last we use this modulus n to get the final result.

The proposed method is depicted as follows. These
items inside the square bracket entries in Equation (12)
can be represented in the following form:

' ' 1 1 2 3 4 5 6 7 1 1
1

2 2

* * * * * * *...* *k k n nA A A A A A A A A A A  


  ; k’ = 1, 3, 5, 7,

9, …...,
1

1
2

n 
 .

Hence, Equation (13) can also be represented by
using a different form as follows.

' ' 1 1 2 3 4 1 1
1

2 2

() mod [(*) mod]*[(*) mod]*...*[(*) mod]k k n nA A n A A n A A n A A n  


 

,for k’ = 1,3,5,7,9, ……,
1

1
2

n


(14)
In this modification, based on the fundamental

modular arithmetic, we need some variables during the
following computational procedures to solve Equation
(12).

a = 1, 3, 5, 7, 9, ……, (



 

4

1n
-1),

b = 1, 3, 5, 7, 9, ……, (



 

8
1n -1),



k’ = 1, 3, 5, 7, 9, ……, (1

1
1

2k

n


    
),

k =1, 2, 3, 4, 5, ……, 



 

2

1
log2

n
.

Here we use the following procedures to evaluate
Equation (12).

The first procedure:

1 ' ' 1 moda k kA A A n

1 2 3 4 1 1
1

2 2

[(*) mod]*[*) mod]*...*[(*) mod]n nA A n A A n A A n 


 (15)

The second procedure:

2 1 1(1) modb a aA A A n

11 12 13 14 1 1
1(1) 1()

4 4

[(*) mod]*[*) mod]*...*[(*) mod]
n n

A A n A A n A A n
          

 (16)


The kth procedure:

' (1) ' (1)(' 1) modkk k k k kA A A n  
(1)1 (1)2 (1)3 (1)4 1 1

(1)(1) (1)()
2 2

[(*) mod]*[*) mod]*...*[(*) mod]k k k k n n
k k

k k

A A n A A n A A n        
     

      

 (17)
The final procedure:
We assure 2

'() modkkB A n (18)
If B = -1, n is a prime number.
If B  -1, n is a composite number.
Complexity analyses
Now we generalize the above procedures from

Equation (15) to Equation (18), and analyze the
complexity of the proposed algorithm in detail as
follows.

The first procedure:

(



 

4

1n -1) modular multiplications are needed to

evaluate Equation (15).
The second procedure:

(



 

8

1n -1) modular multiplications are needed to

evaluate Equation (16).

The kth procedure:

(1

1
1

2k

n


    
) modular multiplications are needed to

evaluate Equation (17).
In the above procedures, we proceed k’ numbers for

each procedure, where

k’ = 1, 3, 5, 7, 9, ……, (1

1
1

2k

n


    ),

and we need to execute k procedures, where

k =1, 2, 3, 4, 5, ……, 



 

2

1
log2

n .

The final procedure:
One modular square is needed to evaluate Equation

(18).
To simplify the discussions in this paper, the

modular operation is ignored and only the multiplication
and the square are referred to [20, 23]. So we can sum up
the computational amounts (the number of modular
multiplication and modular square) in all of the above
procedures below.

1

1 1 1 1 1 1
(1) (1) (1) (1) (1) ... (1) 1

4 8 16 32 64 2k

n n n n n n


                                                   (19)

where k = 1, 2, 3, …, 



 

2

1
log2

n

We rearrange the above equation as follows.

1

1 1 1 1 1
[(1 1) (1 1) (1 1) (1 1) ... (1 1)] 1

4 8 16 32 2k

n n n n n


    
                (20

)
where “+1” inside each parenthesis means we get the

maximum for each item, which marks ceiling symbol in

Equation (19).

Based on Theorem 3, we calculate Equation (20) to
obtain the final result as follows.

1 1
(1)[1 ()] 1

2 2
kn    , where 2

1
log

2

n
k

    
.

(21)
The original Wilson’s primality test method is (n-1)!

≡ -1 mod n. From Table 2, we know the larger the test

COMPUTATIONAL REDUCTION OF WILSON'S... Informatica 33 (2009) 453–458 457

number is, the larger the decimal-digit size is. However,
by using the proposed algorithm, the maximum decimal-
digit size is generated by the (n-1)*(n-2) item. Note, this
item should be bounded to 2q if we assume that the test
number “n” has q decimal-digit size. Some experimental
results are shown in Table 2.

4 Example
Let us take n = 29 to depict our proposed Wilson’s
primality test method and show the correctness of the
proposed method. The Wilson’s primality test method is
based on Equation (4):

(1)! 1modn n   , where n represents a prime
number. Based on Equation (5) to Equation (6), and
Equation (10) to Equation (12), the original Wilson’s
primality test method can be changed as follows.

2(1*2*3*4*5*6*...*11*12*13*14) mod 29 1mod 29 
(22)

Based on Equation (8) and Equation (22), our
proposed method executes basically the following steps:

The first step,
2{[(1*2) mod 29]*[(3*4) mod 29]*...*[(11*12) mod 29]*[(13*14)mod 29]} mod 29 1mod 29 

 2{[2*12*1*27*3*16*8]mod 29} mod 29 1mod 29  .
The second step,

2{[(2*12)mod29]*[(1*27) mod29]*[(3*16) mod29]*[(8)mod29]} mod29 1mod29 

 2{[24*27*19*8]mod 29} mod 29 1mod 29  .
The third step,

2{[(24*27) mod 29]*[(19*8) mod 29]} mod 29 1mod 29 

 2{[10*7]mod 29} mod 29 1mod 29  .
The fourth step,

2{[10*7]mod29} mod29 1mod29 

 2{12mod 29} mod 29 1mod 29  .
The fifth step,

2{12} mod 29 1mod 29 

{144mod 29} 1mod29  .
From the first step to the fifth step, the proposed

Wilson’s primality test method requires 7, 4, 2, 1
modular multiplication and one modular square,
respectively. To sum up, the whole evaluation of the
proposed Wilson’s primality test method requires 14
modular multiplications and one modular square.

5 Conclusions and future works
In this paper, we apply modular arithmetic to improve
the original Wilson’s primality test method for reducing
the computational complexity and getting a better area
usage. Compared these criterions depicted in [3] [4] with
the proposed algorithm in this paper, we can clearly
understand that the test number “n” becomes larger and
the other two methods will require much space and time
as shown in Figure 1 and Table 3. They become
infeasible. By using our proposed algorithm, even though
n grows larger, the space and time we require can be still
under control and save much more.

In the future, we will try to further effectively
improve the Wilson’s primality test method by
transforming integer n from decimal number system into
binary system [21, 27, 28] and reduce the redundant
computational complexity [29-31]. Secondly, starting

from many studies emphasized in this field [32-33], we
will further study and search for more efficient methods
and useful mathematical theorem to speed up the
Wilson’s primality test method. To sum up, we can
therefore perform this deterministic primality test method
more effectively when applying it in modern
cryptosystem.

22.6 26.96
55.17

131.64

284.02

342.85

470.64

684.399

0

100

200

300

400

500

600

700

800

3 5 7 11 17 19 23 29
t est number

m
ul

tip
li

ca
tio

n
nu

m
be

r

Naccache-Donio's method

The proposed method

Figure 1. Complexity comparisons between Naccache-
Donio’s method and the proposed method.

Table 3. Complexity comparisons using smaller test
number “n”.

n Naccache-Donio’s
method

Rosen’s
method

The proposed
method

3 2 22.6 2

5 4 26.96 2.5

7 12 55.17 3

11 240 131.64 6.25

17 80,640 284.02 8.875

19 725,760 342.85 10.375

23 79,833,600 470.64 12.25

29 174,356,582,400 684.399 15.0625

Naccache-Donio’s method:
1

2*[()!]
2

n 
.

Rosen’s method: 2

2[(log)]n n .

The proposed method:
1 1

*[1 ()] 1
2 2

kn 
  ,where 2

1
log

2

n
k

     .

References
[1] R. L. Rivest, A. Shamir, and L. Adleman, “A

method for obtaining digital signatures and public
key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120-126, Oct. 1978.

[2] http://www.meganet.com/primality.htm.
[3] D. Naccache and M. Donio, “Accelerating Wilson’s

Primality Test,” Revue Technique Thomson-CSF,
vol. 23, no. 3, pp. 595-599, 1991.
http://library.wolfram.com/search/.

[4] K.-H. Rosen, Elementary Number Theory and Its
Applications, 3rd Ed., Addison-Wesley, 1988.

[5] M.-R. Schroeder, Number Theory Science and
Communication with Applications in Cryptography,
Berlin, N. Y. Springer-Verlag, 1986.

458 Informatica 33 (2009) 453–458 C.-L. Wu et al.

[6] R. Kumanduri and C. Romero, Number Theory with
Computer Applications, Upper Saddle River, N. J.
Prentice Hall, 1998.

[7] W. Stallings, Cryptography and Network Security
Principles and Practice, 3rd Ed., Prentice-Hall,
2003.

[8] I. Koren, A.-K. Peters, and M.-A. Natick, Computer
Arithmetic Algorithms, 2nd Ed., 2002.

[9] S.-S. Wagstaff, Cryptanalysis of Number Theoretic
Ciphers, CRC Press Chapman & Hall, 2003.

[10] M. Agrawal, “On derandomizing tests for certain
polynomial identities,” Proceedings of 18th IEEE
Annual Conference on Computational Complexity,
2003, vol. 7-10, pp. 355-359.

[11] E.-W. Weisstein, “Primality testing is easy,”
MathWorld Headline News, Aug. 7, 2002.
http://mathworld.wolfram.com/news/2002-08-
07/primetest/.

[12] M. Agrawal, N. Kayal, and N. Saxena, “Primes in
P,” Preprint, Aug. 6, 2002.

[13] D.-J. Bernstein, “An exposition of the Agrawal-
Kayal-Saxena primality-proving theorem,”
http://cr.yp.to/papers/aks.ps, 2002.

[14] D. Mukhopadhyay and D. Roy Chowdhury, “An
efficient end to end design of Rijndael cryptosystem
in 0.18 µ CMOS”, Proceedings of the 18th
International Conference on VLSI Design, pp. 405-
410, Jan. 2005.

[15] J. Linn, “Technology and web user data privacy: a
survey of risks and countermeasures,” IEEE
Security & Privacy Magazine, vol. 3, no. 1, pp. 52-
58, Jan.-Feb. 2005.

[16] R. Silverman, “Massively distributed computing
and factoring large integers,” Communications of
the ACM, vol. 34, no. 11, pp. 95-103, 1991.

[17] M. Rabin, “Probabilistic algorithm for testing
primality,” Journal of Number Theory, vol. 12, pp.
128-138, 1980.

[18] http://mathworld.wolfram.com/
[19] N. Demytko, “Generating multi-precision integers

with guaranteed primality,” IFIP, Elsevier Science
publishers, North-Holland, 1989.

[20] http://scienceworld.wolfram.com/
[21] D.-E. Knuth, The Art of Computer Programming,

vol. 2: Seminumerical Algorithms, 3rd Ed.,
Addison-Wesley, 1998.

[22] D.-C. Lou, C.-L. Wu, and R.-Y. Ou, “Application
of parallel virtual machine framework to the strong
prime problem,” International Journal of Computer

Mathematics, vol. 79, no. 7, pp. 797-806, June
2002.

[23] D.-C. Lou and C.-C. Chang, “Fast exponentiation
method obtained by folding the exponent in half,”
IEE Electronics Letters, vol. 32, no. 11, pp. 984-
985, May 1996.

[24] C.-W. Chou, “Parallel implement of the RSA
public-key cryptosystem,” International Journal
Computer Mathematics, vol. 78, no.5, pp. 153-155,
1993.

[25] M. Joye and S.-M. Yen, “Optimal left-to-right
binary signed-digit recoding,” IEEE Transactions
on Computers, vol. 49, no. 7, pp. 740-748, July
2000.

[26] A. Arora and R. Telang, “Economics of software
vulnerability disclosure”, IEEE Security & Privacy
Magazine, vol. 3, no. 1, pp. 20-25, Jan.-Feb. 2005.

[27] X. Ruan and R.-S. Katti, “Left-to-right optimal
signed-binary representation of a pair of integers,”
IEEE Transactions on Computers, vol. 54, no. 2,
pp. 124-131, Feb. 2005.

[28] M.-E. Kaihara and N. Takagi, “A hardware
algorithm for modular multiplication/division,”
IEEE Transactions on Computers, vol. 54, no. 1,
pp. 12 – 21, Jan. 2005.

[29] D.-C. Lou and C.-L. Wu, “Parallel exponentiation
using common multiplicand multiplication and
signed-digit-folding techniques,” International
Journal of Computer Mathematics , vol. 81 , no. 10
pp. 1187-1202, June 2004.

[30] C.-L. Wu, D.-C. Lou, and T.-J. Chang, “An
efficient Montgomery exponentiation algorithm for
cryptographic application,” Informatica – An
International Journal, vol. 16, no. 3, pp. 449-468,
Sept. 2005.

[31] C.-L. Wu, D.-C. Lou, T.-J. Chang, and S.-Y. Chen,
“Integer factorization for RSA cryptosystem under
a PVM environment,” International Journal of
Computer Systems Science & Engineering, vol. 1,
no. 2, pp. 25-35, Jan. 2007.

[32] C.-L. Wu, D.-C. Lou, and T.-J. Chang, “Fast
parallel exponentiation algorithm for RSA public-
key cryptosystem,” Informatica–An International
Journal, vol. 17, no. 3, pp. 445-462, Sept. 2006.

[33] D.-C. Lou,, J.-C. Lai, C.-L. Wu, and T.-J. Chang,
“An efficient Montgomery exponentiation
algorithm by using signed-digit-recoding and
folding techniques,” Applied Mathematics and
Computation, vol. 185, no. 1, pp. 31-44, Feb. 2007.

