
https://doi.org/10.31449/inf.v44i2.2616 Informatica 44 (2020) 241–262 241

Multi-Objective Artificial Bee Colony Algorithms and Chaotic-

TOPSIS Method for Solving Flowshop Scheduling Problem and

Decision Making

Monalisa Panda
Department of Computer Science and Information Technology, Siksha ‘O’ Anusandhan Deemed to be University

Bhubaneswar, 751030, Odisha, India

E-mail: monalisapanda.iter@gmail.com

Satchidananda Dehuri

Department of Information and Communication Technology, Fakir Mohan University

Vyasa Vihar, Balasore, 756019, Odisha, India

E-mail: satchi.lapa@gmail.com

Alok Kumar Jagadev

School of Computer Engineering, KIIT Deemed to be University

Bhubaneswar, 751024, Odisha, India

E-mail: alok.jagadev@gmail.com

Keywords: flowshop scheduling, multi-objective optimization, local search algorithms, artificial bee colony

algorithm, multi-criteria decision making, chaotic-TOPSIS.

Received: December 13, 2018

Retrieval of optimal solution(s) for a Permutation Flow-Shop Scheduling Problem (PFSSP) within a

reasonable computational timeframe has been a challenge till yet. The problem includes optimization of

various criteria like makespan, total flowtime, earliness, tardiness, etc for obtaining a set of Pareto

solutions in the process of Multi-Objective Optimization (MOO). This paper remodels a Discrete

Artificial Bee Colony Algorithm (DABC) from a single objective optimization method to a multi-

objective optimization one to solve the PFSSP executed and explored through the alternative and

combined use of two local search algorithms named as: Iterated Greedy Search Algorithm (IGRS) and

Iterated Local Search Algorithm (ILS). The algorithm has been classified into three different scenarios

raised with the analysis of time complexity measure of applied local search methods prioritized through

the insertion and swap operation of neighborhood structures that intensifies the local optima in the

search space. The results of the DABC algorithm are summarized with respect to Total Completion Time

(TCT), Mean Weighted Tardiness (MWT), and Mean Weighted Earliness (MWE). Based on the time

complexity measure of the obtained results a Multi-Objective Artificial Bee Colony Algorithm (MOABC)

has been proposed by adopting the simplest local search method of all in order to reflect the enhanced

version of previously remodeled DABC algorithm. Finally, we propose a Chaotic based Technique for

Order of Preference by Similarity to Ideal Solution (Chaotic-TOPSIS) using a suitable chaotic map for

criteria adaptation in order to enhance the decision accuracy in the multi-Criteria Decision Making

(MCDM) domain.

Povzetek: Članek se ukvarja z NP problemom večkriterijske optimizacije izdelave urnika z imenom

Permutation Flow-Shop Scheduling Problem (PFSSP). Uvede Multi-Objective Artificial Bee Colony

Algorithm (MOABC), tj. več-kriterijski algoritem z umetno čebeljo kolonijo in pokaže izboljšane

rezultate.

1 Introduction and related work
The flowshop scheduling problem (FSSP) is a

combinatorial optimization problem, inheriting the ideas

from Barkers sequencing problem [1] that is based on

ordering of jobs to determine a schedule. However, the

problem is NP-hard and introduced by Johnson in 1954

[2]. It has a wide application in logistic, industrial, and

many other fields. It aims to find the minimal total flow

time (TFT) or total completion time (TCT) execution.

The permutation flowshop scheduling problem (PFSSP)

is a particular case of FSSP, consisting of a set of n jobs

which should be processed in the same order as to the

available m machines. The goal is to find the best

permutation of jobs that would result best minimal TCT

execution of all the processes subject to the constraints

that each job is independent, and available for processing

at time zero. From time zero onwards, each machine is

continuously available and is able to process one

operation at a time. Each job can be manufactured at a

mailto:monalisapanda.iter@gmail.com
mailto:satchi.lapa@gmail.com

242 Informatica 44 (2020) 241–262 M. Panda et al.

specific moment on a single machine. When a machine is

not available, automatically the jobs remaining are

queued to a waiting state. An ongoing job, in a machine

is not interrupted till completion.

During the last decades, the research attention for

combinatorial optimization has turned to hybrid systems.

It is observed that combination of different features from

various optimization heuristics results in more robust and

unique combinatorial optimization tools. Since the

pioneering work of Johnson [2], a number of heuristics

have been approached for solving FSSP. These proposed

heuristics can be specified either as constructive or

improvement. Most constructive heuristics [3-7] are the

extended version of the Johnson’s algorithm [2], based

on two or three-machine flowshop problems. In his work

Palmer [3] developed a slope order index for sequencing

the jobs with some allotted machines and processing

times. A little variation to Palmer’s algorithm was

proposed by Gupta [4] in order to estimate the same

slope index. Also a lot many variants of branch and

bound algorithms were developed subsequently [8-11] in

this regard. Ignall and Scharge [10] applied the branch

and bound scheme for the first time, based on two lower

bounds in the two-machine FSSP. Bansal [8] extended

the proposed idea to an m-machine case.

Due to the essence of optimizing multiple objectives

in PFSSP, it is also extended to the multi-objective

domain with many challenging approaches (non-heuristic

and meta-heuristic). Selen and Hotts [12] solved a multi-

objective flowshop scheduling problem (MOPFSSP)

with m-machines by formulating a mixed-integer goal

programming model with two objectives that is

makespan and mean flowtime. Wilson [13] proposed an

alternative model for it, by considering a fewer number

of variables but at the same time he has added large

number of constraints to it. Both the models have

included same number of integer variables. Daniels and

Chambers [14] proposed a branch and bound approach

with two objectives (makespan and maximum tardiness)

where they computed the Pareto solution for a 2-machine

flowshop scheduling problem. Rajendran [15] also

presented a similar procedure along with two heuristic

approaches for the 2-machine flowshop scheduling

problem with two objectives: minimization of TFT

subject to optimal makespan. Similarly two different

methodologies (one is based on a Branch and Bound

(B&B) technique of exact algorithms and other one is

based on Palmer approach of heuristic algorithms) are

used [16] to find the optimum solution for minimization

of bi-criterion (makespan, weighted mean flowtime)

objective function of three machines FSSP with

transportation times and weight of the jobs. Recently a

production scheduling problem in hybrid shops has been

solved by Mousavi et al.[17], by assuming some realistic

assumptions.

Like the non-heuristics, many meta-heuristic

methods like trajectory based and population based

methods have also been proposed to solve MOPFSSPs.

Chakravarthy and Rajendran [18] proposed a simulated

annealing (SA) algorithm for resolving the m-machine

FSSP to minimize makespan and maximum tardiness.

Similarly many SA algorithms [19-21] were proposed to

optimize various objectives like makespan, TFT, and

total tardiness. Another SA algorithm was approached by

Loukil et al. [22] based on m-machine case. The

algorithm assumed objective pairs out of a number of

objectives such as: average weighted completion time,

makespan, average weighted tardiness, maximum

earliness, maximum tardiness, and the number of tardy

jobs. A novel multi-objective memetic search algorithm

(MMSA) [23] is proposed to solve the MOPFSSP with

makespan and total flowtime. The performance of the

algorithm is validated and compared with the four state-

of-the-art algorithms on a number of benchmark problem

and provides better solutions than these compared

algorithms. Another novel fuzzy multi-objective local

search-based decomposition algorithm has been

approached for solving a fuzzy-MOPFSSP for two fuzzy

objectives, that is, the fuzzy makespan and the fuzzy total

flow time. An extensive computational study on Taillard

benchmarks has been conducted to compare the proposed

algorithm with the fuzzy NSGAII and the results

demonstrate the effectiveness of the proposed algorithm

[24].

Among meta-heuristics, swarm intelligence has

created a class of its own, which models the collective

behavior of self-organized models and applies these

models to solve many complex problems. Earlier works

have adopted ant colony optimization (ACO) and particle

swarm optimization (PSO) algorithms to simulate the

swarm behavior of ant colonies and flocks of birds,

respectively. There are a few researches which

implements the PSO and ACO for solving the MOPFSSP

[25-29] subject to makespan, TFT and completion time

variance. Recently, a lot many algorithms have been

proposed by modeling the intelligent behaviors of real

bee swarms in this regard. The emerging research with

artificial bee colony algorithms (ABC) demonstrates that

these algorithms outperform and is equally competitive

as compared to other population-based algorithms with

the advantage of employing fewer control parameters

[30-35]. Sharma et al. [36] provided a state art survey of

ABC algorithm and its performance analysis with

different size of population. Singh [37] has explained

how one can solve different optimization problems using

ABC algorithm. Recently, Amlan et al.[38] applied a

Regional Flood Frequency Analysis (RFFA) to 33 stream

gauging stations in the Eastern Black Sea Basin, Turkey.

Tereshko [39] proposed a DABC algorithm for the FSSP

with intermediate buffers (IBFSP) in order to minimize

the maximum completion time. The DABC algorithm

uses the effectiveness of the insertion and swap operators

to produce neighbourhood solutions at the employed bee

phase. From many such articles [40-42] it is clearly

understood that, swarm intelligence provides a better

algorithmic framework inspired by the intelligent

behaviour of the animals, birds and social insects.

The earlier work of PFSSP solved using DABC

algorithm, mainly focuses on optimization of TCT

criterion. As the DABC algorithm uses many strategies

to find the nearest solutions in the search space, no

detailed work has been done that counts the time

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 243

complexity of the algorithm. To deal with this, we have

remodelled the DABC algorithm of Tasgetiren et al.[43]

for three different cases by the application of some

effective strategies. The proposed algorithm is inherited

with the hybridization of swap/insertion operations and

construction-destruction procedures for the

neighbourhood structures known as iterated local search

(ILS) and iterated greedy search algorithm (IGRS)

respectively. Through an experimental analysis, the

proposed algorithmic cases are evaluated for best CPU

time utilization with respect to three objectives such as:

TCT, weighted mean tardiness (WMT), and weighted

mean earliness (WME). Again in the same scenario we

have tested the results of canonical ABC against DABC

algorithm. Genuinely due to multiple objectives, here

ABC has been turned to multi-objective ABC (MOABC)

with necessary improvements to solve the MOPFSSP.

While working with multiple-objectives it is almost

impossible to get a single compromising solution. The

situation leads to a multi-criteria decision making

(MCDM) scenario. MCDM is the most powerful branch

of decision making: generally handles multiple objective

functions together and includes a lot many approaches

that have been applied to different problem domains to

choose the best alternative. But major parameters like

criterion weight in these methods are founded on

randomness of data. Mareschal [44] has claimed that

proper weight assignment to each criterion will lead to a

better and more appropriate decision making framework

for both qualitative and quantitative data. However, the

weight assignment procedure (specifically to qualitative

criteria) is completely dependent upon the decision

maker’s preference and varies remarkably from one

decision maker to other. This paper proposes TOPSIS

using chaotic maps for generating random numbers

during criteria adaptation to improve the decision

accuracy. The chaotic number generators emerges a

random number each time when needed by the decision

maker to define the criterion weight. To maintain the

criterion preference, we have sorted the random numbers

and assigned them accordingly.

The remaining parts of the paper are assembled as

follows. Section 2 presents the problem formulation and

assumptions. The canonical ABC and DABC algorithm

has been illustrated in Sections 3 and 4 and Section 4

also represents the details of the ILS algorithm and IGRS

algorithm applied in MOPFSSP. Section 5 encloses the

multi-objective ABC for PFSSP. Section 6 contains the

computational results for both algorithms with two

different synthetic datasets. Decision making using

chaotic-TOPSIS is illustrated in section 7. Section 8

concludes the article with future directions.

2 Problem description and

assumptions
A PFSSP is consisting of n jobs (ᴨ1, ᴨ2, ᴨ3........ ᴨn), each

having m number of tasks, that have to be processed in

separate machines. A schedule for the jobs is the

assignment of tasks to time intervals on the available

machines. Task Tji must be assigned to machine j where

the task belongs to job i, additionally for any job i, the

processing of task Tji cannot be started till Tji-1 has been

completed.

Where,

 i ϵ(1, n) and j ϵ(1, m).

 Ojk = processing time of job j on machine k.

Assumptions

(i) Jobs consist of a pre-ordered sequence of

operations.

(ii) At a time only one job can be processed on one

machine.

(iii) The job orderings are same for all machines.

(iv) Timeslot of different job operations is

predetermined.

(v) Once a job starts being processed on the first

machine, cannot be interrupted in between

either on or between machines.

(vi) Release time of all jobs is zero.

As per above stated assumptions, a dummy PFSSP;

having ‘3’ jobs, each with ‘3’ operations having some

random processing time can be executed in ‘3’ different

machines as follows:

With regard to the above context: F (ᴨj), the

flowtime of job ᴨj is same as the completion time C (ᴨj,

m) on the machine m. So the total completion time (TCT

(ᴨ)) of all jobs is equal to maximum of flow time or

completion time of all jobs and is calculated as:

Figure 1: A dummy PFSSP.

Machine

M3

M2

M1 1 2 3

1 2 3

1 2 3

Jobs
Makespan

Time

0

244 Informatica 44 (2020) 241–262 M. Panda et al.

)1(),(max)(max)(
1 1

 
= =

==
n

j

n

j

jj mCFTCT 

Similarly let Dj, be the due date and Cj the

completion time of job j, for jϵn. The jobs earliness and

tardiness can be computed by, Ej=max {Dj-Cj, 0} and

Tj=max {Cj-Dj, 0} respectively. Hence the weighted

mean tardiness and weighted mean earliness of different

job sequence can be calculated as:

)2(
]0;max[

1

1





=

=
−

=
n

j j

n

j jjje

e

eCD
WME

)3(
]0;max[

1

1





=

=
−

=
n

j j

n

j jjj
R

r

rDC
WMT

where,

n =number of jobs

j =job index

jD =due date of job j.

jC = completion time of job j.

jA =arrival time of job j in the shop.

je = earliness cost per unit time for job j

jr =tardiness of job j penalty per unit time.

3 Canonical ABC algorithm
ABC, a member of swarm intelligence is a meta-heuristic

algorithm based on the intelligent behavior of honey

bees, introduced by Karaboga [30, 34-35, 45]. Due to its

simplicity and good performance reported in various

fields while optimizing both single and multi-objective

problem, we motivated to extend its usage in PFSSP. It is

inspired by the nature that is by the foraging behavior of

real honey bees, their self-organization capability, and

specially division of labor features. The canonical ABC

algorithm has some essential components like food

sources, nectar-amount in each source, and three kinds of

foraging honey bees (employed bee, onlooker bee, and

scout bee). Here every food source signifies a candidate

solution in the search space and the fitness of these

solutions is equivalent to the nectar-amount of those food

sources. Employed bees go on searching random food

positions; they also share the collected information about

food sources among the onlooker bees through the

waggle dance. Onlooker bees select the better sources

(better solutions) with high nectar amount (high fitness

value), based on the information (fitness value) from the

employed bees. Scout bees are those employed bees

which could not found remarkable food sources. The

pseudo-code of canonical ABC is given below.

Initialize population (P)

Fitness evaluation (fi)

{

While (cycle<=maximum number of cycle)

{

Employed bee phase

{

Produce neighborhoods

Fitness evaluation selection (fi)

Probability calculation (pi)

}

Onlooker bee phase

{

Select a solution based on probability pi

Produce new solution

Fitness evaluation

Greedy selection procedure

}

Scout bee phase

{

Replace the abandoned one

}

Memorize the best

cycle++

}

4 Modified discrete artificial bee

colony algorithm
Though ABC algorithm is a proved continuous optimizer

for various combinatorial optimization problems, later

has also shown its efficiency towards discrete version of

it. Here, we use a modified version of the above ABC

algorithm to handle discrete decision variables. We have

extended the single objective problem of Tasgetiren et al.

[43] to a multi-objective one and the detailed of modified

DABC has been discussed below:

Initialization:

The population is initialized with a random set of

solutions, each consisting with a random permutation of

jobs.

ᴨ = (ᴨ1, ᴨ2, ᴨ3........ ᴨn) (4)

Employed bee phase:

According to the basic ABC algorithm, the employed

bees generate their neighborhood nectar sources. Here

for obtaining the nearer food sources, we will take the

advantage of the adopted strategies from IG_RS

algorithm and ILS [43]. From IG_RS algorithm we have

borrowed the concept of construction and destruction

procedure and the two common operators named insert

and swap are being inherited from ILS. Each one of these

is used for determining the neighboring solutions in the

search space. In order to evaluate their performances, we

will adopt three different cases with the alternative and

combined use of these operators (insert and swap) and

procedures (destruction- construction). For suitability,

we named each these cases of DABC algorithm

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 245

separately as DABC-I, DABC-II and DABC-III

respectively. This step attempts to improve the

population deterministically by accepting the improved

adjacent solutions by examining their fitness values. The

solutions to next step are chosen on the basis of equal

number of best solutions from each objective

respectively to maintain the population diversity.

Case I:

Each nearest solution in the population is determined by

any one of the following strategy. The selected strategy

is applied two times separately to each permutation ᴨ in

the population, resulting two nearest neighbors and the

best one is selected to the next step.

(i) Applying two-insert moves to a permutation ᴨ

with p=2.

(ii) Applying three-insert moves to a permutation ᴨ

with p=3.

(iii) Applying two-swap moves to a permutation ᴨ

with p=2.

(iv) Applying three-swap moves to a permutation ᴨ

with p=3.

Case II:

Each nearest solution is chosen by applying any of the

following strategy.

(i) Applying two-insert moves to a permutation ᴨ

with p=2.

(ii) Applying three-insert moves to a permutation ᴨ

with p=3.

(iii) Applying two-swap moves to a permutation ᴨ

with p=2.

(iv) Applying three-swap moves to a permutation ᴨ

with p=3.

(v) Applying one destruct-construct procedure to a

permutation ᴨ with destruction size x.

Case III:

The nearest solutions are determined by using the

following strategy.

(i) Applying destruct-construct procedure to a

permutation ᴨ with destruction size x.

Onlooker bee phase:

This phase selects a food source based on the

probabilities obtained from the fitness values during

employed bee phase. The aim of this phase is to find

further better compromising solutions by applying well

devised local search. The probabilistic selection can be

described as:

)5(


=

j

j

i
i

fit

fit
p

Here fiti is defined as the fitness value of the ith

solution compared to other solutions in the solution set.

The solutions with a higher probability are always

selected to the next cycle. In addition to this, almost an

equivalent strategy to that of employed bee phase is

employed during the onlooker bee phase to produce a

new neighborhood solution. An efficient local search

method has to be applied to further improve the

candidates of the onlooker bee phase. A better food

source has to replace the current one and become a new

member in the population; else both are treated as non-

dominated to each other.

Scout phase:

In general, the scout bee phase removes the abandoned

solutions (worst solutions) from the search space and

tries to discover new ones with better fitness value.

Therefore, the DABC algorithm removes a defined

number of worst solutions and replaces them with new

ones by the process of tournament selection in order to

deal with local optima by avoiding the trial counter.

During the evolution process, the solutions will be

prioritised with respect to TCT, WMT and WME. Also

the different cases of the employed bee phase will fall to

different CPU utilization of the algorithm. As per the

selection of basic ABC algorithm, an old solution is

replaced by a new one if it is found to be superior in all

objectives by using a greedy selection procedure.

A common framework for DABC-I, DABC-II, and

DABC-III as follows:

)(

).....,.........,,(

][

),(

)1(

)(_

)1(

]ker[

),(

)1(

)(_

)1(

][

)(

)1(

][

.....,.........,,

][

321

321

















return

solutionsabandonedreplace

for

phasebeeScout

sequencebestatepropertion

Mtoobjetivefor

searchlocal

Ntoifor

phasebeeonloo

sequencebestatepropertion

Mtoobjetivefor

searchlocal

Ntoifor

phasebeeEmployed

fCalculate

Ntoifor

ncalculatioFitness

tionInitializa

N

new

new

new

new

i

N

=

−=

=

=

−=

=

=

=

=

Figure 2: DABC algorithm

4.1 Local search methods: IG_RS

algorithm and ILS algorithm

The insert operator eliminates a job from the job pool

(position r) and reinserts it into another position (q) in

the same pool that is in the permutation ᴨ, such that qϵ (r,

r-1) and the swap operator simply interchanges the

position of two random jobs in a permutation ᴨ. Similarly

the destruction- construction procedure of IG_RS

246 Informatica 44 (2020) 241–262 M. Panda et al.

algorithm reconstructs a job pool by assigning best

positions to a sub part of the original job sequence. Here

the destruction phase randomly removes x number of

jobs from the permutation ᴨ without repetition resulting

two partial solutions ᴨx(x number of jobs) and ᴨx’ (x’=n-x

number of jobs). Then the construction phase adds each

removed jobs back to the pool in the same order by

searching its best position. The motivation of using the

above methodologies in our algorithm is inherited from

the efficacy of the DABC algorithm. Here the focused

parameters are: perturbation strength p and the

destruction size x that has to be carefully chosen. A

perturbation is achieved by a random insertion of a job to

another position or by swapping of some jobs randomly

in a permutation ᴨ. Similarly choosing a larger

destruction size for x will lead to a better result and a

smaller one will be good for CPU time minimization.

Tasgetiren et al. [43] have considered the perturbation

values are as 1or 2 and the x values as 8 or 12 for

different instances of Taillard [46]. However in our

work, we have considered two synthetic datasets for

small and large sized systems with variable number of

jobs and machines. Here the p values are considered as 2

or 3 and the x values are considered as 2 (for small sized)

and 4 (for large size) respectively.

5 MOABC for MOPFSSP
The above proposed DABC algorithm is the direct

extension of single objective DABC proposed by

Tasgetiren et al. [43]. The algorithmic framework and

search for local optima is much more flexible and

effective with the advantages of local search algorithms

in the DABC algorithm. To achieve a more accurate and

efficient problem solving approach in the field of multi

objective optimization; we have simulated these

advantages to model a multi objective Pareto-based ABC

algorithm with same objectives to solve the FSSP. The

proposed MOABC algorithm combines the main idea of

ABC with the above local search strategy to search the

neighborhood structure. To apply the local search

algorithm in the next proposed one, we have adopted one

of the simpler one i.e., the swap () local-search instead of

using all methods randomly. Firstly the proposed

MOABC algorithm initiates a number of randomized job

sequences of n jobs, and is stored in the population

matrix. These sequences represent the random food

sources of ABC, with certain quality and diversity.

Secondly, an exploitation search procedure for the first

two bee phases (employed and onlooker) is designed to

best suit the problem and to intensify the local search

operation. To record the updated non-dominated

sequence emerged in each cycle, it uses a Pareto-based

}

)(

1

1

)()(

)(_

)(_

)(_

)1(

)1(

.,.........,

)(_Pr

'

''

'''

''

'

21

new

new

j

j
new

i

new

N

return

forend

ii

forend

ifend

jj

else

ffif

searchalnstructlocdestructco

searchswaplocal

searchlinsertloca

Ntojfor

Ntoifor

Null

searchlocalocedure

























+=

+=

=

=











=

=

=

=

=

=

Figure 3: Local_search procedure.

)(

),,(_

),(

)(_







return

jisearchswaplocal

jirand

searchswaplocalprocedure

Figure 4: Swap local-search procedure.

procedureend

return

jiinsert

jirand

searchlinsertlocaprocedure

)(

),,(

),(

)(_







Figure 5: Insert local_search procedure.

procedureend

return

construct

destruct

dnstructdestructcoprocedure

RD

d

RD

)(

),(

)(

),(









=

==

Figure 6: Destruct-construct procedure.

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 247

archive set. In addition, the population is well-adjusted

to maintain diversity in scout bee phase by eliminating

the worst solutions. It is seen that proposed algorithm is

able to find the best set of solutions and a proper

statistical analysis has also been done to evaluate the

proposed algorithm’s performance with different inputs.

Some important terms related to MOABC can be defined

below.

Pareto dominance

Any solution S′ is said to be non-dominated to S′′ if and

only if,

(i) (i)The solution S′ is no worse than S′′ in all the

objectives.

(ii) The solution S′ is strictly better than S′′ in at

least one objective.

Pareto optimal solution set and Pareto optimal front

Pareto optimal solution set is the group of all Pareto

optimal solutions, and the respective graphical

representation in the objective space is known as the

Pareto optimal front.

Archive

An archive records the track of the non-dominated

solutions from time to time. It is iteratively updated

throughout the search procedure. Once a new non-

dominated solution generated, the archive is updated

accordingly.

5.1 Problem formulation

The FSSP is rescheduled (fixed to similar assumptions as

stated above) with the same three defined criterions

(TCT, WMT and WME) and n jobs to be solved with

ABC. As we know mostly there will be multiple

solutions, non-dominated to one another will be emerged

during the simultaneous optimization of multiple

objectives (known to discover true Pareto front), we have

done a straight forward extension of uni-objective ABC

as well as above DABC to redesign an MOABC

algorithm. In the employed bee phase, an exploitation

search procedure is applied on the initialized solutions, to

derive the non-dominated solution set. The generated

Pareto front is maintained in an archive with the

corresponding trial counters and will be updated from

time to time. Onlooker bees search for more intensified

solutions within the neighborhood of the food source in

their memory. Finally, the abandoned solutions are

deleted from the archive to stand with a best fitted Pareto

front.

5.2 Architecture

As per the problem architecture, ‘n’ jobs are divided into

‘m’ number of tasks, to be sequenced differently and to

be processed in different machines. Each job sequences

are evaluated through their fitness values against the

individual objective functions. After the problem

evaluation, the resulted sequences are listed out that are

non-dominating to each other. Figure 7 is representing

the MOPFSSP problem architecture which needs to be

optimized to a set of optimal job sequences as

corresponding non- dominated set.

Figure 7: MOPFSSP architecture.

Figure 8 is represents the proposed solution strategy

using MOABC. The proposed model generates multiple

Pareto optimal solutions iteratively which are updated in

an external archive time to time. Here the algorithm

adopts the 2swap () local search strategy to generate the

neighborhood structures in the solution space. The

selection of the same local search procedure is based

upon the time complexity analysis of all considered

methods in the remodeled DABC algorithm.

5.3 Proposed MOABC

This section presents the algorithmic representation of

proposed MOABC algorithm to solve MOPFSSP.

The derived MOABC algorithm, initializes the

population ‘ᴨ’ with ‘n’ solutions, each consisting of a

random number of job sequences similar to the DABC

algorithm. Each updated solutions in the population

matrix are evaluated for the corresponding fitness value

using the objective functions 1- 3. The generated non-

dominated set is maintained in an archive with the

corresponding trial counters; which is updated in every

cycle. Employed bees explore for better sources in the

neighborhood by applying swap () operation, where two

randomly selected jobs i and j (two random selected

dimensions) for a random solution (sequence) k are

Objectives

Total

Completion

Time (TCT)

Weighted

Mean

Tardiness

(WMT)

Weighted

Mean

Earliness

(WME)

Job-

Seq 2
Job-

Seq n

Job-

Seq 1

Optimal Job Sequences

Figure 8: Proposed framework using MOABC.

MOPFFS

P

MOA

BC

algori

thm

Hybridiza

tion with

2-swap

method

Archive

(Non-

domina

ted

set)

248 Informatica 44 (2020) 241–262 M. Panda et al.

swapped with each other. Onlooker bee selects a

candidate source depending on its probability values

calculated and provided by the employed bees. The

solutions with a greater probability are shifted to the

archive. Within a defined number of cycles, the

employed bees whose solutions cannot be further

improved (through a predetermined number of trials) are

treated as abandoned ones and are deleted permanently

from the archive. These abandoned solutions are

calculated by the help of trial counters. If a solution in S

is improved by the corresponding solution in S’ then the

trial counter is set to zero (0), else it is set to one (1).

6 Numerical simulation
The numerical results represent the performance of both

DABC algorithm and MOABC algorithm respectively

with respect of TCT, WMEe and WMTr. Two different

datasets have been initialized with little parameter

variation. One of this has been initialized with small

processing times and due dates named as ‘small-size

dataset’ and the other one is named as ‘large-size’. For

both the proposed algorithms, we have considered

similar input datasets.

6.1 Control parameters

However both the algorithms require same control

parameters except the case of abandoned solution. The

DABC algorithm removes a defined number of worst

solutions and replaces them with new ones in order to

remove abandoned solutions from the population where

as the MOABC algorithm removes those solutions based

on a trial counter limit.

6.1.1 Parameters of DABC

Parameters: Values:

Population size 10

Maximum iterations 50

Number of onlookers 1/2*(colony size)

Number of employed bees 1/2*(colony size)

Worst solutions to be replaced 2 or 4

6.1.2 Parameters of MOABC

Parameters: Values:

Colony size 10

Maximum iterations 50

Number of onlookers 1/2*(colony size)

Number of employed bees 1/2*(colony size)

Limit for abandoned solution 20

6.2 Description of the numerical data

To evaluate DABC-I, DABC-II and DABC-III, two

instances of datasets are customized with two different

combinations of jobs and machines. With a little

parameter variation both the datasets consider same

population size of 10. The due date of each job is

initialized separately with respect to two datasets. We

have assigned same weight for both tardiness and

earliness in both the input sets, while evaluating WMEe

and WMTr. Again the same datasets are used to

characterise the performance of MOABC.

6.2.1 Small-size data

To validate the results at an eye, a small size dataset is

randomized with a combination of 4 jobs and 3 machines

with an ideal parameter setting. The processing time (Oik)

of the jobs are set within [0, 5] and the due times are set

in [10, 15]. The earliness and tardiness weights are

considered in the range [1, 10]. Based on the due time,

the calculated TCT and the weights (earliness and

tardiness), the MWT and MWE of the jobs have to be

calculated. The destruction size has been assumed as 2.

All these parameters, input data, corresponding statistics

and the initial population sequence are tabulated below.

BEGIN

{

Set parameters;

Set population size;

Initialize solutions;

Archive=Null;

Trial counter=Null;

For each solution find the fitness

value;

Generate the non-dominated set;

Update Archive;

Do

 {

//Employed bee phase//

Generate all employed bees and check

their dominance relation to nearby

solutions by swaplocal_ search

procedure;

Compute the Fitness value;

Compute non-dominated set;

Update Archive;

Update trial counter;

//Onlooker bee phase//

Update the solutions using

swaplocal_search () algorithm;

Compute the Fitness value;

Compute non-dominated set;

Update Archive;

Update trial counter;

} While (Stop criterion=Max. no. of

iterations);

//Scout bee phase//

Delete abandoned solutions

Update Archive;

}

END

Figure 9: MOABC pseudo code.

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 249

Parameter setting

(i) Ojk :[1-5]

(ii) Weight (tardiness and earliness): [1, 10]

(iii) Population size: 10

(iv) Destruction size: 2

(v) Due time: [10, 15]

Table 1 represents the processing time of 4 different

jobs with respect to 3 machines. Also it initializes the

expected finish time of each job and an assigned weight

which will be further used to calculate the fitness value

of the defined objective functions.

Table 2 contains the statistical analysis of standard

deviation for each job(small-sized dataset).To calculate

the standard deviation we have summarized the

minimum and maximum processing time of each job

from the pool. The result shows that, standard deviation

of each job ranges between [0, 1].

Using the above information a randomized job

sequence is initialized with population size 10. As we

have considered 4 jobs here, it can have 24 numbers of

different possible sequences. Table 3 contains a random

selection of 10 sequences out of these. These sequences

will be the initial input for the proposed algorithm and

the resulted intermediate sequences will be the further

inputs for different iterations and bee phases.

6.2.2 Large-size data

The other synthetic large size dataset with population

size 10 is generated with 10 jobs and 9 machines are set

with the following parameter setting. Here the processing

time of jobs are set to [0, 10]. The weights and due times

 Job 1 Job 2 Job 3 Job 4

Machine 1 O11=4 O12=1 O13=5 O14=2

Machine 2 O21=3 O22=2 O23=4 O24=3

Machine 3 O31=5 O32=2 O33=3 O34=4

Due time 10 12 30 15

Weight 2 3 4 2

Table 1: Processing time of machine vs task of each job.

Jobs Minimum Maximum Standard

deviation

1 3 5 0.81

2 1 2 0.47

3 3 5 0.81

4 2 4 0.81

Table 2: Statistics of the small-size dataset.

Population

sequence

Job sequence

1 J0 J1 J2 J3

2 J1 J2 J3 J0

3 J2 J3 J0 J1

4 J3 J0 J1 J2

5 J3 J2 J1 J0

6 J0 J3 J2 J1

7 J1 J0 J3 J2

8 J2 J1 J0 J3

9 J0 J1 J2 J3

10 J1 J2 J3 J0

Table 3: Initial population.

Job 0 Job 1 Job

2

Job

3

Job

4

Job

5

Job

6

Job

7

Jo

b 8

Job

9

Machine 1

O11=10 O12=5 O13=8 O14=5 O15=1 O16=7 O17=2 O18=0 O19=9 O1 10=3

Machine 2 O21=3 O22=4 O23=5 O24=8 O25=3 O26=6 O27=2 O28=5 O29=7 O2 10=4

Machine 3 O31=5 O32=3 O33=0 O34=3 O35=5 O36=9 O37=0 O38=0 O39=2 O3 10=3

Machine 4 O41=4 O42=2 O43=4 O44=7 O45=2 O46=3 O47=4 O48=9 O49=0 O4 10=3

Machine 5 O51=1 O52=2 O53=1 O54=5 O55=4 O56=7 O57=2 O58=3 O59=4 O5 10=6

Machine 6 O61=7 O62=3 O63=2 O64=5 O65=3 O66=6 O67=9 O68=4 O69=4 O6 10=2

Machine 7 O71=3 O72=0 O73=2 O74=0 O75=5 O76=5 O77=5 O78=4 O79=2 O7 10=2

Machine 8 O81=8 O82=4 O83=1 O84=0 O85=5 O86=9 O87=4 O88=5 O89=4 O8 10=6

Machine 9 O91=2 O92=4 O93=1 O94=10 O95=8 O96=3 O97=4 O98=5 O99=4 O9 10=7

Due time 80 42 75 85 95 60 10

0

10

5

9

0

65

Weight 2 3 4 6 10 1 4 5 7 9

Table 4: Processing time of machine vs job task.

250 Informatica 44 (2020) 241–262 M. Panda et al.

are initialized within [1, 10] and [50, 100] respectively.

The destruction size has been assumed as 4. The same

required data as per the small sized dataset are also

represented using different tabulations in the same

sequence.

Parameter setting

(i) Ojk :[0-10]

(ii) Weight (tardiness and earliness): [1, 10]

(iii) Population size: 10

(iv) Destruction size: 4

As per the parameter setting, Table 4 is finalized

with different processing times for individual jobs with

respect to corresponding machines. It also assumes the

due times and job weights. Job weights are basically the

representative of their priorities.

Similar to the first dataset, we have also done a

statistical analysis of the large-size dataset in Table 5.As

per the minimum and maximum processing time of each

job, the standard deviation of the jobs ranges between

[1,3].

Table 6 contains the initial population set consisting

of 10 jobs. These jobs can be arranged in 10! number of

possible ways and we have selected a random 10 out of it

as the initial input. As compared to the small-sized

dataset there is a very less chance of repeating the same

sequences as the intermediate result sequences, due the

application of different tuning operators

(insert/swap/construct-destruct).

6.3 Numerical results and analysis

Using the above specified inputs the results are tabulated

separately for each algorithm. First, the results of DABC

are represented and then that of MOABC. Firstly the

results are tabulated then are reflected into corresponding

graphical representations through the help of various

figures where ‘X’ and ‘Y’ dimensions represents the

‘performance score’ versus ‘job sequences’ respectively.

Each unit of ‘X’ and ‘Y’ dimension in the small-size

dataset counts as 5 and 1 respectively, similarly it counts

as 20 and 1 for the large- size dataset for the same

dimensional sequence.

6.3.1 Results of DABC Algorithm

The tabulated results include the performance of DABC

algorithms for individual cases with two specified inputs.

Table 7-9 represents the final job sequences for small

dataset corresponding to TCT, MWT and MWE and

table 10-12 includes the results for the other input

dataset. Table 7 and 10 includes the results of DABC-I

algorithm with swap () and insert () operation having

random perturbation values 2 or 3. Table 8 and 11 shows

the results of DABC-II, that include another operation

construct-destruct () additional to the operations of

DABC-I. Only construct-destruct is used in DABC-III

and the results are tabulated in Table 9 and12.

6.3.1.1 Small-size dataset

Table 7 contains the resulted TCT, MWT, MWE of the

small-sized dataset for DABC-I. As mentioned, DABC-I

uses the swap () and insert () algorithms to update the

solution vectors. The result includes the completion time

of every job in different sequences and TCT of each job

sequence is equal to the completion time of the last job of

the individual sequence. According to the initialized

weight and due time the respective MWT and MWE has

been calculated.

The graphical representation of Table 7 has been

shown in Figure 10. Each job sequences have been

represented individually with its corresponding TCT,

MWE, and MWT scores.

The results of DABC-II is tabulated in Table 8.Based

on the completion time, weight and due date of

individual jobs the corresponding TCT, MWT, and

MWE values are summarized and presented here. To

update the job sequences here all the local search

methods (insert/swap/construction and destruction) have

been applied randomly.

Jobs Minimum Maximum Standard deviation

1 1 10 2.81

2 0 5 1.45

3 0 8 2.40

4 0 10 3.18

5 1 8 1.94

6 3 9 2.07

7 0 9 2.40

8 0 9 2.72

9 0 9 2.53

 10 2 7 1.76

Table 5: Statistics of the large-size dataset.

P Job sequence

1 J

J0

J

J1

J

J2

J

J3

J

J4

J

J5

J

J6

J

J7

J

J8

J

J9

2 J

J1

J

J2

J

J3

J

J4

J

J5

J

J6

J

J7

J

J8

J

J9

J

J0

3 J

J2

J

J3

J

J4

J

J5

J

J6

J

J7

J

J8

J

J9

J

J0

J

J1

4 J

J3

J

J4

J

J5

J

J6

J

J7

J

J8

J

J9

J

J0

J

J1

J

J2

5 J

J4

J

J5

J

J6

J

J7

J

J8

J

J9

J

J0

J

J1

J

J2

J

J3

6 J

J5

J

J6

J

J7

J

J8

J

J9

J

J0

J

J1

J

J2

J

J3

J

J4

7 J

J6

J

J7

J

J8

J

J9

J

J0

J

J1

J

J2

J

J3

J

J4

J

J5

8 J

J7

J

J8

J

J9

J

J0

J

J1

J

J2

J

J3

J

J4

J

J5

J

J6

9 J

J8

J

J9

J

J0

J

J1

J

J2

J

J3

J

J4

J

J5

J

J6

J

J7

10 J

J9

J

J0

J

J1

2

J2

J

J3

J

J4

J

J5

J

J6

J

J7

J

J8

Table 6: Initial population.

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 251

The tabulated results of DABC-II are graphically

represented in Figure 11. Like DABC-I, most of the

cases have more earliness penalty than the tardiness

penalty. While adopting selection of average number of

solution sequences from each objective, we found some

of the repeating sequences. These have to be treated as

one ultimately. Hence, the total numbers of non-

dominated sequences are 7 in number but we have

represented all repeated sequences also.

The results of DABC-III have been listed in Table 9.

The three objective functions are evaluated with a

recursive set of sequences and the fitness values are

summarized. DABC-III explicitly uses destruct-

construct for perturbing the solution sets.

P Final job sequence &

completion time

TC

T

MW

T

MWE

1 J3 J1 J0 J2 19 0.72 5.54

9 11 16 19

2 J3 J1 J2 J0 20 0.9 5.9

 9 11 15 20

3 J0 J1 J3 J2 21 2.0 4.36

12 14 18 21

4 J1 J0 J2 J3 21 1.3 5.6

5 13 17 21

5 J1 J2 J0 J3 22 1.54 5.27

5 13 18 22

6 J1 J2 J3 J0 22 1.54 5.63

5 13 17 22

7 J2 J1 J0 J3 23 2.36 4.0

12 14 19 23

8 J0 J3 J2 J1 21 2.54 4.0

12 16 19 21

9 J0 J3 J1 J2 21 2.54 4.36

12 16 18 21

10 J2 J3 J1 J0 23 2.9 4.36

12 16 18 23

Table 7: Results of DABC-I.

Population Final job

sequence &

completion time

TCT MWT MWE

1 J1 J3 J0 J2 19 0.72 6.9

5 10 15 19

2 J3 J0 J1 J2 19 1.27 5.27

9 14 16 19

3 J1 J3 J2 J0 20 0.90 6.9

5 10 15 20

4 J3 J2 J1 J0 21 1.63 5.27

9 14 16 21

5 J3 J2 J1 J0 21 1.63 5.27

9 14 16 21

6 J3 J2 J1 J0 21 1.63 5.27

9 14 16 21

7 J3 J2 J0 J1 21 1.63 4.18

9 14 19 21

8 J0 J2 J3 J1 22 2.72 3.63

12 16 20 22

9 J0 J2 J3 J1 22 2.72 3.63

12 16 20 22

10 J2 J0 J1 J3 23 3.18 4.0

12 17 19 23

Table 8: Results of DABC-II.

Figure 10 Graphical representation of DABC-I.

Figure 11: Graphical representation of DABC-II.

Figure 12: Graphical representation of DABC-III.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 V

al
u

e

Number of Job Sequence

Small-Sized DABC-I

TCT MWT MWE

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ve
 V

al
u

e

Number of Job Sequence

Small-Sized DABC-II

TCT MWT MWE

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 V

al
u

e

Number of Job Sequence

Small-Sized DABC-III

TCT MWT MWE

252 Informatica 44 (2020) 241–262 M. Panda et al.

Table 9 results are graphically represented in Figure

12 showing a clear-cut demarcation of TCT, MWE, and

MWT for 10 different sequences. Apart from TCT, most

of the non-dominated sequences have earliness penalty is

more than tardiness penalty.

6.3.1.2 Large-size dataset

Table 10 stores the results of DABC-I for the large-sized

dataset. Along with every sequence, the completion time

of individual jobs are listed leading to the TCT score of

that sequence. Out of 10 random sequences of 10

different jobs, 8 sequences are having greater MWE

score than MWT.

Table 10 is graphically represented in Figure 13,

showing the ratio of MWE score, MWT score, and TMT

score of individual job sequence. Except sequence 10 and

9, other sequences are having more MWE score than

MWT score.

Results of DABC-II for the second input are stored

in Table 11. The results also show similar efficiency as

that before. Here also the earliness cost is more in many

sequences.

Figure 14 represents Table 11. We can obtain the

better sequences having minimum TCT, MWT, and

MWE. As discussed, DABC-II uses all the local search

methods to improve pre existing solutions.

DABC-III results for the large-sized input are

tabulated in Table 12. It shows construct-destruct () has

similar efficiency to search good solutions from the

search space. But, out of all local search algorithms this

one is having maximum algorithmic complexity.

Figure 15 represents DABC-III, pictorially showing

the fitness value of different resulted sequences.

 As discussed above the result tables and

corresponding graphs have been represented below.

P Final job

sequence &

completion time

TC

T

M

WT

M

WE

1 J3 J0 J2 J1 20 1.45 4.54

9 14 18 20

2 J0 J1 J3 J2 21 2.0 4.36

12 14 18 21

3 J0 J3 J2 J1 21 2.54 4.0

12 16 19 21

4 J0 J3 J1 J2 21 2.54 4.36

12 16 18 21

5 J3 J2 J0 J1 21 1.63 4.18

9 14 19 21

6 J3 J2 J0 J1 21 1.63 4.18

9 14 19 21

7 J0 J2 J3 J1 22 2.72 3.63

12 16 20 22

8 J2 J3 J1 J0 23 2.9 4.3

12 16 18 23

9 J2 J3 J1 J0 23 2.9 4.3

12 16 18 23

1

0

J0 J2 J1 J3 22 2.72 4.36

12 16 18 22

Table 9: Results of DABC-III.

P

Final job sequence & completion time

TCT MWT MWE

1 J7 J4 J3 J5 J6 J8 J9 J0 J1 J2 92 5.21 14.43

35 43 53 64 69 73 82 85 91 92

2 J7 J2 J4 J5 J6 J3 J8 J9 J0 J1 96 6.11 14.6

35 36 48 64 69 79 83 90 92 96

3 J7 J5 J8 J4 J9 J0 J1 J2 J3 J6 98 7.49 11.94

35 55 60 69 76 78 83 84 94 98

4 J0 J1 J6 J3 J4 J5 J2 J7 J8 J9 100 7.25 12.84

43 49 55 65 73 80 81 88 92 100

5 J1 J2 J3 J4 J8 J6 J7 J5 J9 J0 104 8.68 14.0

27 29 56 67 71 75 81 91 101 104

6 J9 J7 J0 J1 J2 J8 J3 J4 J5 J6 106 8.84 17.8

36 43 49 55 56 62 80 91 101 106

7 J0 J1 J2 J9 J3 J4 J5 J6 J7 J8 106 9.7 12.52

43 49 50 61 71 81 91 96 102 106

8 J5 J6 J9 J8 J0 J7 J1 J2 J3 J4 107 10.17 9.0

55 60 69 73 76 85 88 89 99 107

9 J1 J2 J3 J5 J4 J6 J7 J8 J9 J0 106 9.7 9.11

27 29 56 74 84 88 93 97 104 106

10 J8 J2 J0 J3 J4 J5 J6 J7 J9 J1 107 9.66 11.9

36 37 55 65 74 84 89 95 103 107

Table 10: Results of DABC-I.

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 253

6.3.1.3 Discussion and time complexity analysis of

DABC algorithm

The DABC algorithm is tested under three types of

scenarios using the local search algorithms such as two-

swap (), three-swap (), two- insert (), three-insert () and

destruct-construct () iteratively. Each time a random

local search algorithm is used to find out nearest optimal

solutions. To achieve the population diversity we have

used the selection strategy of selecting proportionately

equal number of solutions from each objective function.

In the small-sized input data we see that many times the

resulted sequences are being repeated because of less

number of jobs, which is a rare in the large one. We

checked the complexity of these algorithms in terms of

number of machines (M) and number of jobs (N).

P Final job sequence & completion time TCT MWT MWE

1 J9 J0 J1 J7 J3 J4 J5 J6 J8 J2 94 6.07 14.82

36 46 52 58 68 76 84 89 93 94

2 J7 J8 J9 J4 J1 J0 J2 J3 J6 J5 95 5.3 20.49

35 39 49 57 61 63 64 74 85 95

3 J6 J3 J4 J5 J7 J2 J8 J9 J0 J1 95 5.74 13.64

32 45 56 66 73 74 78 86 89 95

4 J3 J4 J8 J6 J7 J0 J9 J5 J1 J2 95 6.8 13.6

43 54 58 62 68 73 84 89 94 95

5 J6 J2 J3 J4 J5 J8 J7 J1 J9 J0 100 7.5 13.47

32 33 53 64 74 79 85 89 97 100

6 J8 J9 J0 J2 J7 J1 J3 J4 J5 J6 109 7.78 15.82

36 49 54 55 66 70 80 88 96 109

7 J8 J4 J0 J5 J6 J7 J9 J1 J2 J3 105 8.7 10.6

36 51 54 71 76 82 90 94 95 105

8 J5 J6 J7 J8 J9 J0 J3 J2 J1 J4 104 9.17 8.76

55 60 66 70 78 81 91 92 96 104

9 J5 J2 J6 J0 J7 J8 J9 J1 J3 J4 111 11.13 9.45

55 56 62 69 77 81 89 93 103 111

10 J8 J2 J0 J3 J4 J5 J6 J7 J9 J1 107 9.66 11.9

36 37 55 65 74 84 89 95 103 107

Table 11: Results of DABC-II.

Population

individual

Final job sequence & completion time TCT MWT MWE

1 J6 J3 J4 J7 J5 J8 J9 J1 J0 J2 93 5.7 13.6

32 45 56 61 71 76 85 89 92 93

2 J1 J9 J3 J4 J5 J6 J7 J8 J2 J0 94 5.4 14.47

27 42 52 62 72 77 83 87 88 94

3 J6 J7 J3 J9 J0 J1 J2 J5 J4 J8 95 5.54 19.31

32 39 49 56 60 66 67 81 91 95

4 J6 J7 J3 J9 J0 J1 J2 J5 J4 J8 95 5.54 19.31

32 39 49 56 60 66 67 81 91 95

5 J7 J6 J3 J8 J9 J0 J1 J2 J5 J4 96 5.64 19.0

35 43 53 57 64 66 70 71 86 96

6 J4 J6 J0 J1 J2 J3 J5 J7 J8 J9 99 6.2 19.17

36 40 47 53 54 64 80 87 91 99

7 J3 J4 J7 J5 J6 J8 J9 J0 J1 J2 97 7.52 11.19

43 54 59 69 74 78 87 90 96 97

8 J5 J3 J1 J6 J7 J8 J9 J0 J2 J4 101 8.41 8.43

55 65 69 73 78 82 89 91 92 101

9 J5 J7 J8 J9 J0 J1 J6 J2 J3 J4 106 9.96 9.19

55 62 66 74 77 83 87 88 98 106

10 J7 J8 J5 J9 J0 J1 J2 J3 J4 J6 106 9.3 9.9

35 39 64 74 77 83 84 94 102 106

Table 12: Results of DABC-III.

254 Informatica 44 (2020) 241–262 M. Panda et al.

We have used these functions alternatively in

DABC-I, DABC-II and DABC-III, and see that using

construct-destruct (), the algorithm is not giving any

significant improvement in the result. Based on the time

complexity of different local search methods, we

conclude that DABC-I is better than DABC-II and

DABC-II is better than DABC-III.

6.3.2 Results and discussions through MOABC

While optimizing three objectives through MOABC, a

number of non-dominated solutions are resulted and are

listed below with their respective Pareto fronts. Here we

do not find any abandoned solutions as there was no

solution in the final archive having trial counter value

more than 20. In the small-size dataset there are ‘7’ non-

dominated sets and the large one is resulting 10 such

solutions in the resulting Pareto front.

Figure 15: Graphical representation of DABC-III.

Figure 16: Pareto front (small-size).

Figure 17: Pareto front (large-size).

0

50

100

150

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 V

al
u

e

Number of Job Sequence

Large-Size DABC-III

TCT MWT MWE

0

5

10

15

20

25

1 2 3 4 5 6 7

P
e

rf
o

rm
an

ce
 V

al
u

e

Number of Job Sequence

MOABC Small-Sized

TCT MWT MWE

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 V

al
u

e

Number of Job Sequence

MOABC Large-Size

TCT MWT MWE

Local-search

algorithms

Time complexity

Two-swap O(MN)

Three-swap() O(MN)

Two-insert() O(MN)

Three-insert() O(MN)

Construct-destruct() O(MN2)

Table 13: Time complexity analysis of local search

algorithms.

Figure 13: Graphical representation of DABC-I.

Figure 14: Graphical representation of DABC-II.

0

50

100

150

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 V

al
u

e

Number of Job Sequence

Large-Sized DABC-I

TCT MWT MWE

0

50

100

150

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 V

al
u

e

Number of Job Sequence

Large-Size DABC-II

TCT MWT MWE

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 255

6.3.2.1 Small-size dataset

7 non-dominated solutions emerged from the first dataset

and are listed in Table 14. These solutions can be further

evaluated by the decision maker to reach at the definite

goal.

The resulted non-dominated set of table 14 has been

depicted to the corresponding Pareto front in figure 16.

The 3 objectives fitness values show a clear graphical

visualization of the non-dominated set.

6.3.2.2 Large-size dataset

Table 15 stores the 10 non-dominated solutions emerged

from the large-sized dataset. Each solution is represented

with individual job completion time and finally the TCT

value of the same sequence, followed by MWT and

MWE respectively.

Each best fitted solution for the large-sized dataset is

captured as its Pareto front and is represented in figure

18, with its respective fitness values.

The MOABC also yields equally compromising

optimized solutions as that of DABC algorithm. The

results reveal that the proposed algorithms are superior

enough to deal with multi-objectives with a little

parameter variation to the canonical ABC. It is a straight

forward extension of uni-objective ABC with mixing

advantages of local search procedure from the proposed

DABC algorithm. We have just applied one of the

simplest local search procedure that is two-swap ()

procedure to optimize the local optima which definitely

helps in reducing the algorithmic complexity.

From the result analysis, apart from the completion

time, it is seen that most of time the earliness penalty is

more than the tardiness penalty. Hence with a required

priority level of all the objectives a decision maker can

easily go for making a balanced decision for him by

applying a suitable MCDM method.

7 Decision making with chaotic-

TOPSIS
After generating successful optimized solution set, we

cannot avoid for selecting an appropriate one among

these during the decision making process. MCDM is a

successful tool for decision making with conflicting

P Final job sequence

& completion time

TCT MW

T

MW

E

1 J0 J1 J3 J2 21 2.0 4.36

12 14 18 21

2 J3 J1 J2 J0 20 0.9 5.9

9 11 15 20

3 J1 J3 J0 J2 19 0.72 6.9

5 10 15 19

4 J3 J2 J1 J0 21 1.63 5.27

9 14 16 21

5 J1 J3 J2 J0 20 0.90 6.9

5 10 15 20

6 J3 J2 J0 J1 21 1.63 4.18

9 14 19 21

7 J1 J2 J3 J0 22 1.54 5.63

5 13 17 22

Table 14: Non-dominated job sequence.

P Final job sequence & completion time TCT MWT MWE

1 J2 J3 J4 J5 J6 J7 J8 J9 J0 J1 104 8.96 10.27

24 51 62 72 77 83 87 95 98 104

2 J3 J4 J5 J6 J7 J8 J9 J0 J1 J2 97 7.54 10.60

43 54 64 69 75 79 87 90 96 97

3 J4 J5 J6 J7 J8 J9 J0 J1 J2 J3 99 7.19 12.86

36 56 61 67 71 79 82 88 89 99

4 J5 J6 J7 J8 J9 J0 J1 J2 J3 J4 106 9.8 9.47

55 60 66 70 78 81 87 88 98 106

5 J6 J7 J8 J9 J0 J1 J2 J3 J4 J5 101 6.54 21.29

32 39 43 51 57 63 64 80 91 101

6 J0 J1 J5 J3 J4 J2 J6 J7 J8 J9 109 10.39 5.03

43 49 70 80 88 89 93 98 102 109

7 J1 J2 J6 J4 J5 J3 J7 J8 J9 J0 99 7.37 15.01

27 29 50 60 71 81 86 90 97 99

8 J2 J3 J7 J5 J6 J4 J8 J9 J0 J1 107 10.15 8.76

24 51 61 74 79 89 93 100 102 107

9 J4 J5 J9 J7 J8 J6 J0 J1 J2 J3 99 7.19 11.21

36 56 66 71 75 79 82 88 89 99

10 J0 J1 J5 J4 J3 J2 J6 J7 J8 J9 111 11.05 4.29

43 49 70 80 90 91 95 100 104 111

Table 15: Non-dominated job sequence.

256 Informatica 44 (2020) 241–262 M. Panda et al.

criterion. Various methods show their respective

efficiency in this regard. By a comparative survey we

have concluded to decide the final optimal solution here

with in our problem using TOPSIS method which really

seems to be fit .We have summarized some of the recent

TOPSIS applications followed by the discussions of our

motivation.

Li et al. [47] presents a new method based on

TOPSIS and response surface method (RSM) for MCDM

problems with interval number. Similarly Madi et al. [48]

provided a detailed comparison of TOPSIS and Fuzzy-

TOPSIS in a systematic and stepwise manner. Sotoudeh-

Anvari [49] suggested a stochastic multi-objective

optimization model for assigning resource and time in

order to search the individuals who are trapped in

disaster regions. To reduce the heavy computation of the

model, two efficient MCDM techniques, i.e. TOPSIS and

COPRAS are employed which tackles the ranking

problem. Zavadskas et al. [50] reviewed 105 papers

which developed, extended, proposed and presented

TOPSIS approach for solving DM problems from 2000

to 2015. Recently Wu et al.[51] proposes an improved

methodology for handling ships which uses TOPSIS

method to make the final decision.

TOPSIS

TOPSIS was developed by Hwang and Yoon [52] in the

year of 1981 as an alternative to the elimination and

choice translating reality (ELECTRE) method. The basic

idea of TOPSIS is quite simple and it has been originated

from a displaced ideal point from which the selected

solution has shortest distance [53-54]. Further it is

refined [52] to the rank based method by assigning

specific orders to the available alternatives. The whole

concept is based on the two artificial ideal points; that is

the ultimate solution is measured by having longest

distance from the positive ideal solution (PIS) and the

shortest from the negative ideal solution (NIS). Hence a

preference order of all alternatives is generated as per

their relative closeness to the ideal solutions. As

concluded by Kim et al. [55] and our observations, basic

TOPSIS advantages are recorded as:

(i) It is an accepted logic that is focused to

rationale of human choice;

(ii) A scalar value justifies both the ideal

alternatives together;

(iii) Simple algorithmic framework and can easily be

coded to the spreadsheet;

(iv) A straightforward performance evaluation of all

alternatives against the defined criteria which

can be clearly visualized and represented for

two or more dimensions.

The above defined advantages make TOPSIS an

omnipresent MCDM technique as compared with rest

techniques [52]. In fact it is a utility-based method that

evaluates every alternative directly depending on the

available data in the decision matrices and weights [56].

Apart from this, the simulation comparison [57] of

TOPSIS method signifies that it has the fewest rank

reversals apart from rest methods in the category. Thus,

TOPSIS is chosen as the backbone of MCDM.

The preliminary issue with the method is the

normalized decision matrix operation, where randomness

is achieved while assigning the criterion weights. Hence

a narrow gap derived between the performed measures

due to the weighted normalized value of the decision

matrix. It can be advantageous to substitute this

randomness with a suitable chaotic map. Chaos has a

very similar property to randomness with better statistical

and dynamical characteristic. Such a dynamic mixing is

truly appreciated to enhance solutions potentiality by

touching every mode in a multi-objective landscape.

Hence the use of a well-suit chaotic map in TOPSIS can

be definitely helpful to enhance the decision making by

generating preferred randomness in criterion weight.

Chaotic maps

Simulation of complex phenomena such as: numerical

analysis, decision making, sampling, heuristic

optimization etc. needs random sequences for a longer

period and good uniformity [58]. Chaotic map is a

deterministic, discrete-time dynamic system that is

considered as source of randomness, which is non-

period, bounded and non-converging [59-60]. However

the nature of chaotic maps is apparently random,

unpredictable and it has a very sensitive dependence on

its initial condition and parameter [58].

A chaotic map can be represented as:

)12(...3,2,1,0,1,0),(1 ==+ kxxfx kkk

Different selected chaotic maps that produce chaotic

numbers in [0, 1] are listed below in table 16 [59-60].

Chao Map Definition

Logistic

Map
)1(41 nnn xxx −=+

Circle Map)1mod()2/5.0(2.11 nnn xxx −+=+

Gauss Map

 kkk

n

n

n

xxx

otherwisex

x
x

/1/1)1mod(/1

),1mod(/1

0,0

−=







 =

=

Henon

Map 1

2

1 3.04.11 −+ +−= nnn xxx

Sinusoidal

Map
)sin(1 nn xx =+

Sinus Map)sin(2

1)(3.2 nx

nn xx


=+

Tent Map









−


=+

otherwisexx

xx
x

nn

nn

n
),1(3/10

7.0,7.0/
1

Table 16: Different Chaotic Maps.

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 257

Again it is a challenging task to find out a proper and

suitable chaotic function to well fit to our decision

making problem. Researchers used a number of chaotic

sequences to tune various parameters in various meta-

heuristic optimization algorithms such as particle swarm

optimization[61-62], genetic algorithms[63], harmony

search[60], imperialist competitive algorithm [64], ant

and bee colony optimization [65, 59], firefly algorithm

[62] and simulated annealing [66]. Each research in

different direction has shown some promise once the

right set of chaotic maps is applied. Gandomi and Yang

[67] founds sinusoidal map is the most suitable for the

bat algorithm to replace with loudness and pulse rate

respectively. Similarly Gandomi et al. [61] have

experimented twelve different chaotic maps to tune the

major parameters of PSO. They revealed sinusoidal map

and singer map perform better result in comparison to the

rest. Talatahari et al.[64] proposed in a novel chaotic

improved imperialist competitive algorithm by investing

seven different chaotic maps and sinusoidal and logistic

maps are found as the best choices. Also in Gandomi et

al. [62] experimentally revealed sinusoidal map and

gauss maps are the best performed chao to be adopted for

firefly algorithm. Most experimental results proved

sinusoidal as a common better performing random

generator. By watching the efficiency of sinusoidal map,

we have used the same to find out the random numbers in

the TOPSIS weight assignment procedure. Again it is

important for the decision maker to maintain the priority

level of all criterions. To cope up with this we have

sorted the random numbers and assigned them to the

respective criterions.

Decision results

To finalize the decision results we have generated a

set of three chaotic numbers using sinusoidal map and

sorted them to represent different criterion weights. With

respect to each decision matrix we have allotted the same

criterion weight, in a preference order i.e., {0.5, 0.3, 0.2}.

Here we have assumed of TCT with highest preference,

Altern

-ative

TCT MWT MWE Closeness

coeff

Rank

A1 92 5.21 14.43 0.2960 10

A2 96 6.11 14.6 0.3667 9

A3 98 7.49 11.94 0.4132 8

A4 100 7.25 12.84 0.4320 7

A5 104 8.68 14.0 0.6617 3

A6 106 8.84 17.8 0.8070 1

A7 106 9.7 12.52 0.6873 2

A8 107 10.17 9.0 0.5862 5

A9 106 9.7 9.11 0.5640 6

A10 107 9.66 11.9 0.6613 4

Table 20: Alternatives from DABC-I.

Altern

-ative

TCT MWT MWE Closeness

coefficient

Rank

A1 94 6.07 14.82 0.2946 9

A2 95 5.3 20.49 0.4250 6

A3 95 5.74 13.64 0.2352 10

A4 95 6.8 13.6 0.3047 8

A5 100 7.5 13.47 0.3839 7

A6 109 7.78 15.82 0.5232 3

A7 105 8.7 10.6 0.4484 4

A8 104 9.17 8.76 0.4466 5

A9 111 11.13 9.45 0.5918 1

A10 107 9.66 11.9 0.5668 2

Table 21: Alternatives from DABC-II.

Altern-

ative

TCT MWT MWE Closeness

coefficient

Rank

A1 19 0.72 5.54 0.1524 10

A2 20 0.9 5.9 0.2130 9

A3 21 2.0 4.36 0.5606 5

A4 21 1.3 5.6 0.3238 8

A5 22 1.54 5.27 0.4201 7

A6 22 1.54 5.63 0.4302 6

A7 23 2.36 4.0 0.7036 4

A8 21 2.54 4.0 0.7278 3

A9 21 2.54 4.36 0.7475 2

 A10 23 2.9 4.36 0.8476 1

Table 17: Alternatives from DABC-I.

Altern-

ative

TCT MWT MWE Closeness

coefficient

Rank

A1 19 0.72 6.9 0.2462 7

A2 19 1.27 5.27 0.2515 6

A3 20 0.90 6.9 0.2704 5

A4(A5,A6) 21 1.63 5.27 0.3907 3

A7 21 1.63 4.18 0.3604 4

A8 (A9) 22 2.72 3.63 0.6813 2

A10 23 3.18 4.0 0.7755 1

Table 18: Alternatives from DABC-II.

Altern-

ative

TCT MWT MWE Closeness

coefficient

Rank

A1 20 1.45 4.54 0.179

6

8

A2 21 2.0 4.36 0.396

7

6

A3 21 2.54 4.0 0.668

8

5

A4 21 2.54 4.36 0.687

3

4

A5(A6) 21 1.63 4.18 0.198

3

7

A7 22 2.72 3.63 0.756

4

3

A8(A9) 23 2.9 4.3 0.946

1

1

A10 22 2.72 4.36 0.835

6

2

Table 19: Alternatives from DABC-III.

258 Informatica 44 (2020) 241–262 M. Panda et al.

then MWT and lastly MWE. The decision matrices are

nothing but various resulted non-dominated sequences of

TCT, MWT and MWE. For every individual decision

matrix we have generated the closeness coefficient value

w.r.t both the ideal solutions and so as the ranks. Firstly

we have calculated the ranks of all the alternatives

generated from DABC-I, DABC-II and DABC-III for the

small-size dataset followed by the large one. Lastly the

alternatives from MOABC are evaluated in the same

sequence.

DABC (Small-sized)

Table 17 represents the alternatives generated from

DABC-I. 10 alternatives are evaluated with the proposed

chao-TOPSIS procedure and the ranks are presented.

Alternative A10 is having highest closeness coefficient

value than all, hence is chosen as rank 1 alternative for

the decision maker.

The non-dominated sequences of DABC-II (Table

18) are having some of the repeating sequences; hence

they are treated as one single alternative. Alternatives A4,

A5, A6 are the same sequences and that of alternatives A8

and A9. These repeating sequences are the result of

selecting the proportionately best fitness values from

each objective function and application of local search

algorithms repeatedly to a small sized data set. Hence

altogether we have evaluated 7 sequences and the last

alternative A10 is the best ranked.

Similarly table 19 contains the resulting sequences of

DABC-III. Out of 10 sequences two pairs ((A5=A6) and

(A8=A9)) are repeated sequences. Hence 8 sequences are

evaluated against the three objectives using chaotic-

TOPSIS. The calculation shows, the seventh sequence

i.e. A8 (or A9) is having rank 1.

DABC (Large-size Dataset)

The large-sized synthetic dataset has again 3 decision

matrices from DABC-I, DABC-II and DABC-III to be

evaluated. Table 20 contains the decision matrix resulted

from DABC-I. The 10 different alternatives (sequences)

are having different closeness coefficient values and A6

is the highest ranked alternative.

The following decision matrix of Table 21 is the

resulted optimized sequence of DABC-II for the large

input data. Each alternative are processed to check the

best set of functional values from the calculated

closeness coefficient value. Here alternative A9 is found

to be superior one.

The non-dominated sequence of DABC-III is

represented as the decision matrix in Table 22 with 10

alternatives. Two alternatives A3 and A4are having same

sequences. Hence altogether 9 different sequences are

processed and according to chaotic-TOPSIS, A9 is the

best one to be chosen by the decision maker.

MOABC

Table 23 contains the non-dominated sequence of

MOABC for the small sized data set. It is consisting of 7

alternatives and chaotic-TOPSIS valuates A1 as the

suitable alternative for the decision maker among all.

Altern

-ative

TCT MWT MWE Closenes

s coeff

Rank

A1 21 2.0 4.36 0.7498 1

A2 20 0.9 5.9 0.2380 7

A3 19 0.72 6.9 0.2529 6

A4 21 1.63 5.27 0.6696 2

A5 20 0.90 6.9 0.3065 5

A6 21 1.63 4.18 0.6129 4

A7 22 1.54 5.63 0.6554 3

Table 23: Alternatives from MOABC (Small-sized).

Altern-

ative

TCT MWT MWE Closeness

coefficient

Rank

A1 104 8.96 10.27 0.1132 6

A2 97 7.54 10.60 0.1098 7

A3 99 7.19 12.86 0.1441 4

A4 106 9.8 9.47 0.8105 1

A5 101 6.54 21.29 0.2516 2

A6 109 10.39 5.03 0.0744 10

A7 99 7.37 15.01 0.1750 3

A8 107 10.15 8.76 0.1015 8

A9 99 7.19 11.21 0.1192 5

A10 111 11.05 4.29 0.0847 9

Table 24: Alternatives from MOABC (Large-sized).

Altern

-ative

TCT MWT MW

E

Closen

ess

coeffic

ient

Rank

A1 94 6.07 14.82 0.2946 9

A2 95 5.3 20.49 0.4250 6

A3 95 5.74 13.64 0.2352 10

A4 95 6.8 13.6 0.3047 8

A5 100 7.5 13.47 0.3839 7

A6 109 7.78 15.82 0.5232 3

A7 105 8.7 10.6 0.4484 4

A8 104 9.17 8.76 0.4466 5

A9 111 11.13 9.45 0.5918 1

A10 107 9.66 11.9 0.5668 2

A1 93 5.7 13.6 0.2540 9

A2 94 5.4 14.47 0.2760 8

A3(A4) 95 5.54 19.31 0.4281 6

A5 96 5.64 19.0 0.4291 5

A6 99 6.2 19.17 0.4806 3

A7 97 7.52 11.19 0.3873 7

A8 101 8.41 8.43 0.4526 4

A9 106 9.96 9.19 0.6012 1

A10 106 9.3 9.9 0.5810 2

Table 22: Alternatives from DABC-III.

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 259

The non-dominated sequences of MOABC for the

large data input is consisting of 10 sequences and are

represented in Table 24. After checking the closeness

coefficient values A4 is found as the best alternative

among all.

The use of generating random numbers using

different chaotic functions has been one of the

remarkable techniques to tune the parameters in various

algorithms in many fields, and this has become an active

research topic in the recent optimization literature. By

watching its advantage, we have introduced the concept

of chaotic map to the standard TOPSIS, and have

checked for the best alternative among a set of non-

dominated solutions. The decision makers will be

definitely confident enough to take a right decision

among the conflicting ones using the approach.

8 Conclusions and future research
The DABC and MOABC algorithms were coded and

applied to the multiple instances of dataset ranging from

3 jobs with 3 machines to 10 jobs and 9 machines. In this

paper, we considered the MOPFSSP under the multiple

(three) criteria. The DABC algorithm is hybridized with

a variant of iterated greedy algorithms employing a local

search procedure based on insertion (), swap () and

destruct- construct () neighborhood structures. In

addition, we also presented an extended version of ABC

algorithm to the proposed MOABC algorithm employed

through a particular local search procedure with reduced

complexity. Our proposal is having a significant

application of DABC to check the time complexity of

different local search procedures. Hence, we are

motivated to use simple swap () operation in local search

procedure in the MOABC algorithm. The performances

of both the proposed algorithms were tested by using

different instances of datasets and it has been shown that

the performances of both DABC and MOABC

algorithms are highly competitive with the best

performing existing literature. Also we have extended

our work to optimize the non-dominated solutions to a

single optimal solution using chaotic-TOPSIS method to

derive the optimal decision in the field of MCDM. The

proposed approach will definitely help the decision

makers to solve various MCDM problems in future.

Further the problem of FSSP can be extended with no-

wait flowshop, blocking flowshop and no-idle flowshop,

etc. Apart from three criteria we may practically have a

many objective (MaO) PFSSP, which will obviously

increase the number of non-dominated solutions in the

search space. We may further work to find other

effective ways to make a right decision for the decision

makers to reach at a definite goal.

9 Acknowledgment
The data applied in this study is consisting of synthetic

datasets ranges from small-size to large-sized ones.

10 References
[1] K R Baker. Introduction to sequencing and

scheduling. John Wiley & Sons Inc. New

York,1974.

[2] S. M. Johnson. Optimal two- and three-stage

production schedules with setup times included.

Naval Research Logistics Quarterly, 1(1): 61–68,

1954. https://doi.org/10.1002/nav.3800010110

[3] D. S. Palmer. Sequencing jobs through a multi-

stage process in the minimum total time-a quick

method of obtaining a near optimum. Operations

Research Society, 16(1): 101–107, 1965.

https://doi.org/10.2307/3006688

[4] Jatinder N. D. Gupta. A functional heuristic

algorithm for the flow shop scheduling problem.

Operations Research Quarterly, 22(1)39–47, 1971.

https://doi.org/10.2307/3008015

[5] Herbert G. Campbell, Richard A. Dudek and Milton

L. Smith. A heuristic algorithm for the n-job, m-

machine sequencing problem. Management

Science, 16(10): .630–637, 1970.

https://doi.org/10.1287/mnsc.16.10.b630

[6] David G. Dannenbring. An evaluation of flow shop

sequencing heuristics. Management Science,

23(11):1174–1182, 1977.

https://doi.org/10.1287/mnsc.23.11.1174

[7] Nawaz, Muhammad, Enscore Jr, E Emory and

Ham, Inyong. A heuristic for the m-machine n-job

flow shop sequencing problem. Omega, 11(1): 91–

95, 1983.

[8] S P Bansal. Minimizing the sum of completion

times of n-jobs over m-machines in a flowshop: a

branch and bound approach. AIIE Transactions,

9(3):306–311, 1977.

https://doi.org/10.1080/05695557708975160

[9] Chia-Shin Chung, James Flynn and Omer Kirca. A

branch and bound algorithm to minimize the total

flow time for m-machine permutation flowshop

problems. International Journal of Production

Economics, 79(3): 185–196, 2002.

https://doi.org/10.1016/s0925-5273(02)00234-7

[10] Edward Ignall and Linus Schrage. Application of

the branch and bound technique to some flow-shop

scheduling problems. Operations Research, 13(3):

400–412, 1965.

https://doi.org/10.1287/opre.13.3.400

[11] S.L. van de Velde. Minimizing the sum of the job

completion times in the two-machine flow shop by

Lagrangian relaxation. Annals of Operations

Research, 26(1-4):257–268, 1990.

https://doi.org/10.1007/bf03500931

[12] Willem J. Selen and David D. Hott. A mixed-

integer goal-programming formulation of the

standart flow-shop scheduling problem. Operation

Research Society, 37(12) :1121–1128, 1986.

https://doi.org/10.2307/2582302

[13] J. M. Wilson. Alternative formulations of a

flowshop scheduling problem. Operation Research

Society, 40(4): 395–399, 1989.

https://doi.org/10.1057/jors.1989.58

https://doi.org/10.1002/nav.3800010110
https://doi.org/10.2307/3006688
https://doi.org/10.2307/3008015
https://doi.org/10.2307/3008015
https://doi.org/10.2307/3008036
https://doi.org/10.1287/mnsc.23.11.1174
https://doi.org/10.1287/mnsc.23.11.1174
https://doi.org/10.1080/05695557708975160
https://doi.org/10.1016/s0925-5273(02)00234-7
https://doi.org/10.1287/opre.13.3.400
https://doi.org/10.1007/bf03500931
https://doi.org/10.1007/bf03500931
https://doi.org/10.2307/2582302
https://doi.org/10.2307/2582302
https://doi.org/10.1057/jors.1989.58

260 Informatica 44 (2020) 241–262 M. Panda et al.

[14] Richard L. Daniels and Robert J. Chambers. Multi-

objective flowshop scheduling. Naval Research

Logistics, 37(6): 981–995, 1990.

https://doi.org/10.1002/1520-

6750(199012)37:6%3C981::aid-

nav3220370617%3E3.0.co;2-h

[15] Chandrasekharan Rajendran. Heuristics for

scheduling in flowshop with multiple objectives.

European Journal of Operation Research,

82(3):540–555, 1995.

https://doi.org/10.1016/0377-2217(93)e0212-g

[16] Neelam Tyagi, R. P. Tripathi and A. B.

Chandramouli. Three Machines Flowshop

Scheduling Model with Bicriterion Objective

Function, 9(48): 1-14, 2016.

https://doi.org/10.17485/ijst/2016/v9i48/103012

[17] S.M. Mousavi, I. Mahdavi, J. Rezaeian and M.

Zandieh. Bi-objective scheduling for the re-entrant

hybrid flow shop with learning effect and setup

times. Scientia Iranica, 25(4): 2233-2253, 2017.

https://doi.org/10.24200/sci.2017.4451

[18] Karunakaran Chakravarthy and Chandrasekharan

Rajendran. A heuristic for scheduling in flowshop

with bi-criteria of makespan and maximum

tardiness minimization. Production Planning &

Control, 10(7): 707–714, 1999.

https://doi.org/10.1080/095372899232777

[19] R.K. Suresh and K.M. Mohanasundaram. Pareto

archived simulated annealing for permutation flow

shop scheduling with multiple objective.

Proceedings of the 2004 IEEE Conference on

Cybernetics and Intelligent Systems, 712–717,

2004.

https://doi.org/10.1109/iccis.2004.1460675

[20] T.K. Varadharajan and Chandrasekharan

Rajendran. A multi-objective simulated-annealing

algorithm for scheduling in flowshops to minimize

the makespan and total flowtime of jobs. Europian

Journal of Operation Research, 167(3): 772–795,

2005.

https://doi.org/10.1016/j.ejor.2004.07.020

[21] B. Shahul Hamid Khan and Kannan Govindan.

Multi-objective simulated annealing algorithm for

permutation flow shop scheduling problem.

International Journal of Advanced Operations

Management, 3(1):88–100, 2011.

https://doi.org/10.1504/ijaom.2011.040661

[22] T. Loukil, J. Teghem and D. Tuyttens. Solving

multi-objective production scheduling problems

using metaheuristics. European Journal Operation

Research, 161(1):42–61, 2005.

https://doi.org/10.1016/j.ejor.2003.08.029

[23] Xiangtao Li and Shijing Ma. Multi-objective

memetic search algorithm for multi-objective

permutation flow shop scheduling problem. IEEE

Access, 4: 2154-2165, 2016.

https://doi.org/10.1109/access.2016.2565622

[24] Fuyu Yuan, Xin Xu and Minghao Yin. A novel

fuzzy model for multi-objective permutation flow

shop scheduling problem with fuzzy processing

time. Advances in Mechanical Engineering,

11(4):1–9, 2019.

https://doi.org/10.1177/1687814019843699

[25] S. Chandrasekaran, S. G. Ponnambalam, R. K.

Suresh and N. Vijayakumar. Multi-objective

particle swarm optimization algorithm for

scheduling in flowshops to minimize makespan,

total flowtime and completion time variance. IEEE

Congress on Evolutionary Computation, 4012–

4018, 2007.

https://doi.org/10.1109/cec.2007.4424994

[26] Vincent T'kindt, Nicolas Monmarché, Fabrice

Tercinet and Daniel Laügt. An ant colony

optimization algorithm to solve a 2-machine

bicriteria flowshop scheduling problem. European

Journal of Operation Research, 142(2):250–257,

(2002).

https://doi.org/10.1016/s0377-2217(02)00265-5

[27] Betul Yagmahan and Mehmet Mutlu Yenisey. Ant

colony optimization for multi-objective flow shop

scheduling problem. Computers and Industrial

Engineering, 54(3):411–420, 2008.

https://doi.org/10.1016/j.cie.2007.08.003

[28] B.M.T. Lin, C.Y. Lu, S.J. Shyu and C.Y. Tsai.

Development of new features of ant colony

optimization for flowshop scheduling. International

Journal of Production Economics, 112(2) :742–

755, 2008.

https://doi.org/10.1016/j.ijpe.2007.06.007

[29] M. Ziaee, S.J. Sadjadi, J.L. Bouquard. An Ant

Colony Algorithm for the Flowshop Scheduling

Problem. Journal of Applied Sciences. 8(21): 3938–

3944, 2008.

https://doi.org/10.3923/jas.2008.3938.3944

[30] Dervis Karaboga. An idea based on honey bee

swarm for numerical optimization. Technical

Report TR06. Computer Engineering Department.

Erciyes University. Turkey, 2005.

[31] Dervis Karaboga and Bahriye Basturk. A powerful

and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm.

Journal of Global Optimization, 39(3):459–471,

2007.

https://doi.org/10.1007/s10898-007-9149-x

[32] Dervis Karaboga and B. Basturk. On the

performance of artificial bee colony (ABC)

algorithm. Applied Soft Computing, 8(1): 687–697,

2008.

https://doi.org/10.1016/j.asoc.2007.05.007

[33] Nurhan Karaboga. A new design method based on

artificial bee colony algorithm for digital IIR filters.

Journal of the Franklin Institute, 346 (4): 328–348,

2009.

https://doi.org/10.1016/j.jfranklin.2008.11.003

[34] Dervis Karaboga and Bahriye Akay. A comparative

study of artificial bee colony algorithm. Applied

Mathematics and Computation, 214 (1):108-132,

2009.

https://doi.org/10.1016/j.amc.2009.03.090

[35] Dervis Karaboga and Bahriye Akay. A survey:

Algorithms simulating bee swarm intelligence.

https://doi.org/10.1002/1520-6750(199012)37:6%3C981::aid-nav3220370617%3E3.0.co;2-h
https://doi.org/10.1002/1520-6750(199012)37:6%3C981::aid-nav3220370617%3E3.0.co;2-h
https://doi.org/10.1002/1520-6750(199012)37:6%3C981::aid-nav3220370617%3E3.0.co;2-h
https://doi.org/10.1016/0377-2217(93)e0212-g
https://doi.org/10.17485/ijst/2016/v9i48/103012
https://doi.org/10.17485/ijst/2016/v9i48/103012
https://doi.org/10.24200/sci.2017.4451
https://doi.org/10.1080/095372899232777
https://doi.org/10.1109/iccis.2004.1460675
https://doi.org/10.1016/j.ejor.2004.07.020
https://doi.org/10.1016/j.ejor.2004.07.020
https://doi.org/10.1504/ijaom.2011.040661
https://doi.org/10.1016/j.ejor.2003.08.029
https://doi.org/10.1109/access.2016.2565622
https://doi.org/10.1177/1687814019843699
https://doi.org/10.1177/1687814019843699
https://doi.org/10.1109/cec.2007.4424994
https://doi.org/10.1109/cec.2007.4424994
https://doi.org/10.1016/s0377-2217(02)00265-5
https://doi.org/10.1016/j.cie.2007.08.003
https://doi.org/10.1016/j.cie.2007.08.003
https://doi.org/10.1016/j.ijpe.2007.06.007
https://doi.org/10.3923/jas.2008.3938.3944
https://doi.org/10.1007/s10898-007-9149-x
%09https:/doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1016/j.jfranklin.2008.11.003
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.1016/j.amc.2009.03.090

Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 261

Artificial Intelligence Review, 31(1-4):68-85, 2009.

https://doi.org/10.1007/s10462-009-9127-4

[36] Sangeeta Sharma and Pawan Bhambu. Artificial

bee colony algorithm: A survey. International

Journal of Computer Applications, 149(4):11-19,

2016.

https://doi.org/10.5120/ijca2016911384.

[37] Pradeep Kumar Singh. A systematic review on

artificial bee colony optimization technique.

International Journal of Control Theory and

Applications, 9(11): 5487-5500, 2016.

[38] Tuğçe Anılan, Ergun Uzlu, Murat Kankal and Omer

Yuksek. The estimation of flood quantiles in

ungauged sites using teaching-learning based

optimization and artifcial bee colony algorithms.

Scientia Iranica, 2017.

https://doi.org/10.24200/sci.2017.4185

[39] Valery Tereshko. Reaction-diffusion model of a

honeybee colony’s foraging behaviour, in: PPSN

VI. Proceedings of the Sixth International

Conference on Parallel Problem Solving from

Nature, Springer-Verlag, 807–816, 2000.

https://doi.org/10.1007/3-540-45356-3_79

[40] Su-jun Zhang and Xing-sheng Gu. An effective

discrete artificial bee colony algorithm for flow

shop scheduling problem with intermediate buffers.

Journal of Central South University,

22(9):3471−3484, 2015.

https://doi.org/10.1007/s11771-015-2887-x

[41] Hoon-Shik Woo and Dong-Soon Yim. A heuristic

algorithm for mean flowtime objective in flowshop

scheduling. Computers and Operations Research,

25(3):175–182.

https://doi.org/10.1016/s0305-0548(97)00050-6

[42] I. Kassabalidis, M.A. El-Sharkawi, R.J. Marks, P.

Arabshahi and A.A. Gray. Swarm intelligence for

routing in communication networks. Global

Telecommunications Conference, 3613–3617,

2001.

https://doi.org/10.1109/glocom.2001.966355

[43] M. Fatih Tasgetiren, Quan-Ke Pan, P.N. Suganthan

and Angela H-L Chen. A discrete artificial bee

colony algorithm for the total flowtime

minimization in permutation flowshops.

Information Sciences, 181(16): 3459–3475, 2011.

https://doi.org/10.1016/j.ins.2011.04.018

[44] Bertrand Mareschal. Weight stability intervals in

multicriteria decision aid. Europian Journal of

Operation Research, 33(1) :54–64,1988.

https://doi.org/10.1016/0377-2217(88)90254-8

[45] Dervis Karaboga, Beyza Gorkemli, Celal Ozturk

and Nurhan Karaboga. A comprehensive survey:

Artificial bee colony (ABC) algorithm and

applications. Artificial Intelligence Review, 42(1):

21-57, 2014.

https://doi.org/10.1007/s10462-012-9328-0

[46] E. Taillard, E. Benchmarks for basic scheduling

problems. European Journal of Operational

Research, 64(2):278–285, 1993.

https://doi.org/10.1016/0377-2217(93)90182-m

[47] Peng Wang, Yang Li, Yong-Hu Wang and Zhou-

Quan Zhu. A new method Based on TOPSIS and

Response Surface Method for MCDM problems

with interval numbers. Mathematical Problems in

Engineering. Article ID 938535, 2015:1-11, 2015.

https://doi.org/10.1155/2015/938535

[48] Elissa Nadia Madi, Jonathan M. Garibaldi and

Christian Wagner. An exploration of issues and

limitations in current methods of TOPSIS and fuzzy

TOPSIS. IEEE International Conference on Fuzzy

Systems, 2098-2105, 2016.

https://doi.org/10.1109/fuzz-ieee.2016.7737950

[49] Alireza Sotoudeh-Anvari, Seyed Jafar Sadjadi,

Seyed Mohammad Hadji Molana and Soheil Sadi-

Nezhad. A stochastic multi-objective model based

on the classical optimal search model for searching

for the people who are lost in response stage of

earthquake. Scientia Iranica, 26(3):1842:1864,

2019.

https://doi.org/10.24200/sci.2018.20226

[50] Edmundas Kazimieras Zavadskas, Abbas Mardani,

Zenonas Turskis, Ahmad Jusoh and Khalil MD

Nor. Development of TOPSIS method to solve

complicated decision-making problems: An

overview on developments from 2000 to 2015.

International Journal of Information Technology &

Decision Making, 15 (3): 1-38, 2016.

https://doi.org/10.1142/s0219622016300019

[51] Bing Wu, Likang Zong, Xinping Yan and C.

Guedes Soares. Incorporating evidential reasoning

and TOPSIS into group decision-making under

uncertainty for handling ship without command.

Ocean Engineering,164: 590-603, 2018.

https://doi.org/10.1016/j.oceaneng.2018.06.054

[52] Ching-Lai Hwang and Kwangsun Yoon. Multiple

Attribute Decision Making. Springer-Verlag,

Berlin, 58-191, 1981.

https://doi.org/10.1007/978-3-642-48318-9_3

[53] Sheldon M. Belenson and Kailash C. Kapur. An

algorithm for solving multi-criterion linear

programming problems with examples. Operational

Research Quarterly, 24(1): 65-77, 1973.

https://doi.org/10.2307/3008036

[54] Milan Zelany. A concept of compromise solutions

and the method of the displaced ideal’ Computers

and Operations Research, 1(3-4): 479-496,1974.

https://doi.org/10.1016/0305-0548(74)90064-1

[55] Gyutai Kim, Chan S Park and K.Paul Yoon.

Identifying investment opportunities for advanced

manufacturing systems with comparative-integrated

performance measurement. International Journal of

Production Economics, 50(1): 23-33, 1997.

https://doi.org/10.1016/s0925-5273(97)00014-5

[56] Steven Cheng, Christine W. Chan and Guo H.

Huang. Using multiple criteria decision analysis for

supporting decision of solid waste management.

Journal of Environmental Science and Health. Part

A, 37(6): 975-990, 2002.

https://doi.org/10.1081/ese-120004517

[57] Stelios H. Zanakis, Anthony Solomon, Nicole

Wishart and Sandipa Dublish. Multi-attribute

https://doi.org/10.1007/s10462-009-9127-4
https://doi.org/10.5120/ijca2016911384
https://doi.org/10.24200/sci.2017.4185
https://doi.org/10.1007/3-540-45356-3_79
https://doi.org/10.1007/s11771-015-2887-x
https://doi.org/10.1016/s0305-0548(97)00050-6
https://doi.org/10.1109/glocom.2001.966355
https://doi.org/10.1016/j.ins.2011.04.018
https://doi.org/10.1016/j.ins.2011.04.018
https://doi.org/10.1016/0377-2217(88)90254-8
https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1016/0377-2217(93)90182-m
https://doi.org/10.1155/2015/938535
https://doi.org/10.1109/fuzz-ieee.2016.7737950
https://doi.org/10.24200/sci.2018.20226
https://doi.org/10.1142/s0219622016300019
https://doi.org/10.1142/s0219622016300019
https://doi.org/10.1016/j.oceaneng.2018.06.054
https://doi.org/10.1007/978-3-642-48318-9_3
https://doi.org/10.1007/978-3-642-48318-9_3
https://doi.org/10.2307/3008036
https://doi.org/10.2307/3008036
https://doi.org/10.1016/0305-0548(74)90064-1
https://doi.org/10.1016/s0925-5273(97)00014-5
https://doi.org/10.1081/ese-120004517
https://doi.org/10.1081/ese-120004517

262 Informatica 44 (2020) 241–262 M. Panda et al.

decision making: A simulation comparison of

selection methods. European Journal of Operational

Research, 107(3):507–529, 1998.

https://doi.org/10.1016/s0377-2217(97)00147-1

[58] Leandro dos Santos Coelho and Viviana Cocco.

Use of chaotic sequences in a biologically inspired

algorithm for engineering design and optimization.

Expert Systems with Applications, 34(3):1905-

1913, 2008.

https://doi.org/10.1016/j.eswa.2007.02.002

[59] Bilal Altlas. Chaotic bee colony algorithms for

global numerical optimization. Expert systems with

applications, 37(8): 5682-5687, 2010.

https://doi.org/10.1016/j.eswa.2010.02.042

[60] Bilal Altlas. Chaotic harmony search algorithms.

Applied mathematics and computation, 216(9):

2687–2699, 2010.

https://doi.org/10.1016/j.amc.2010.03.114

[61] Amir Hossein Gandomi, Gun Jin Yun, Xin-She

Yang and Siamak Talatahari. Chaos-enhanced

accelerated particle swarm algorithm.

Communications in Nonlinear Science and

Numerical Simulation, 18(2):327–340, 2013.

https://doi.org/10.1016/j.cnsns.2012.07.017

[62] Amir Hossein Gandomi, X.-S. Yang, S. Talatahari

and A.H. Alavi. Firefly algorithm with chaos.

Communications in Nonlinear Science and

Numerical Simulation, 18(1): 89–98, 2013.

https://doi.org/10.1016/j.cnsns.2012.06.009

[63] Golnar Gharooni-fard, Fahime Moein-darbari,

Hossein Deldari and Anahita Morvaridi. Scheduling

of scientific workflows using a chaos-genetic

algorithm. Procedia Computer Science, 1(1): 1445–

1454, 2010.

https://doi.org/10.1016/j.procs.2010.04.160

[64] S. Talatahari, B. Farahmand Azar, R.

Sheikholeslami and A.H. Gandomi. Imperialist

competitive algorithm combined with chaos for

global optimization. Communications in Nonlinear

Science and Numerical Simulations, 17(3): 1312–

1319, 2012.

https://doi.org/10.1016/j.cnsns.2011.08.021

[65] Wei Gong and Shoubin Wang. Chaos ant colony

optimization and application. 4th Inter-national

Conference on Internet Computing for Science and

Engineering, 301–303, 2009.

https://doi.org/10.1109/icicse.2009.38

[66] Ji Mingjun and Tang Huanwen. Application of

chaos in simulated annealing. Chaos, Solitons &

Fractals, 21(4): 933–941, 2004.

https://doi.org/10.1016/j.chaos.2003.12.032

[67] Amir H. Gandomi and Xin-She Yang. Chaotic bat

algorithm. Journal of Computational Science,

5(2):224-234, 2014.

https://doi.org/10.1016/j.jocs.2013.10.002

https://doi.org/10.1016/s0377-2217(97)00147-1
https://doi.org/10.1016/j.eswa.2007.02.002
https://doi.org/10.1016/j.eswa.2007.02.002
https://doi.org/10.1016/j.eswa.2010.02.042
https://doi.org/10.1016/j.amc.2010.03.114
https://doi.org/10.1016/j.cnsns.2012.07.017
https://doi.org/10.1016/j.cnsns.2012.07.017
https://doi.org/10.1016/j.cnsns.2012.06.009
https://doi.org/10.1016/j.procs.2010.04.160
https://doi.org/10.1016/j.procs.2010.04.160
https://doi.org/10.1016/j.cnsns.2011.08.021
https://doi.org/10.1016/j.cnsns.2011.08.021
https://doi.org/10.1109/icicse.2009.38
https://doi.org/10.1109/icicse.2009.38
https://doi.org/10.1016/j.chaos.2003.12.032
https://doi.org/10.1016/j.jocs.2013.10.002

