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Retrieval of optimal solution(s) for a Permutation Flow-Shop Scheduling Problem (PFSSP) within a 

reasonable computational timeframe has been a challenge till yet. The problem includes optimization of 

various criteria like makespan, total flowtime, earliness, tardiness, etc for obtaining a set of Pareto 

solutions in the process of Multi-Objective Optimization (MOO). This paper remodels a Discrete 

Artificial Bee Colony Algorithm (DABC) from a single objective optimization method to a multi- 

objective optimization one to solve the PFSSP executed and explored through the alternative and 

combined use of two local search algorithms named as: Iterated Greedy Search Algorithm (IGRS) and 

Iterated Local Search Algorithm (ILS). The algorithm has been classified into three different scenarios 

raised with the analysis of time complexity measure of applied local search methods prioritized through 

the insertion and swap operation of neighborhood structures that intensifies the local optima in the 

search space. The results of the DABC algorithm are summarized with respect to Total Completion Time 

(TCT), Mean Weighted Tardiness (MWT), and Mean Weighted Earliness (MWE). Based on the time 

complexity measure of the obtained results a Multi-Objective Artificial Bee Colony Algorithm (MOABC) 

has been proposed by adopting the simplest local search method of all in order to reflect the enhanced 

version of previously remodeled DABC algorithm. Finally, we propose a Chaotic based Technique for 

Order of Preference by Similarity to Ideal Solution (Chaotic-TOPSIS) using a suitable chaotic map for 

criteria adaptation in order to enhance the decision accuracy in the multi-Criteria Decision Making 

(MCDM) domain. 

Povzetek: Članek se ukvarja z NP problemom večkriterijske optimizacije izdelave urnika z imenom  

Permutation Flow-Shop Scheduling Problem (PFSSP). Uvede Multi-Objective Artificial Bee Colony 

Algorithm (MOABC), tj. več-kriterijski algoritem z umetno čebeljo kolonijo in pokaže izboljšane 

rezultate. 

1 Introduction and related work 
The flowshop scheduling problem (FSSP) is a 

combinatorial optimization problem, inheriting the ideas 

from Barkers sequencing problem [1] that is based on 

ordering of jobs to determine a schedule. However, the 

problem is NP-hard and introduced by Johnson in 1954 

[2]. It has a wide application in logistic, industrial, and 

many other fields. It aims to find the minimal total flow 

time (TFT) or total completion time (TCT) execution. 

The permutation flowshop scheduling problem (PFSSP) 

is a particular case of FSSP, consisting of a set of n jobs 

which should be processed in the same order as to the 

available m machines. The goal is to find the best 

permutation of jobs that would result best minimal TCT 

execution of all the processes subject to the constraints 

that each job is independent, and available for processing 

at time zero. From time zero onwards, each machine is 

continuously available and is able to process one 

operation at a time. Each job can be manufactured at a 
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specific moment on a single machine. When a machine is 

not available, automatically the jobs remaining are 

queued to a waiting state. An ongoing job, in a machine 

is not interrupted till completion. 

During the last decades, the research attention for 

combinatorial optimization has turned to hybrid systems. 

It is observed that combination of different features from 

various optimization heuristics results in more robust and 

unique combinatorial optimization tools. Since the 

pioneering work of Johnson [2], a number of heuristics 

have been approached for solving FSSP. These proposed 

heuristics can be specified either as constructive or 

improvement. Most constructive heuristics [3-7] are the 

extended version of the Johnson’s algorithm [2], based 

on two or three-machine flowshop problems. In his work 

Palmer [3] developed a slope order index for sequencing 

the jobs with some allotted machines and processing 

times. A little variation to Palmer’s algorithm was 

proposed by Gupta [4] in order to estimate the same 

slope index. Also a lot many variants of branch and 

bound algorithms were developed subsequently [8-11] in 

this regard. Ignall and Scharge [10] applied the branch 

and bound scheme for the first time, based on two lower 

bounds in the two-machine FSSP. Bansal [8] extended 

the proposed idea to an m-machine case.  

Due to the essence of optimizing multiple objectives 

in PFSSP, it is also extended to the multi-objective 

domain with many challenging approaches (non-heuristic 

and meta-heuristic). Selen and Hotts [12] solved a multi-

objective flowshop scheduling problem (MOPFSSP) 

with m-machines by formulating a mixed-integer goal 

programming model with two objectives that is 

makespan and mean flowtime. Wilson [13] proposed an 

alternative model for it, by considering a fewer number 

of variables but at the same time he has added large 

number of constraints to it. Both the models have 

included same number of integer variables. Daniels and 

Chambers [14] proposed a branch and bound approach 

with two objectives (makespan and maximum tardiness) 

where they computed the Pareto solution for a 2-machine 

flowshop scheduling problem. Rajendran [15] also 

presented a similar procedure along with two heuristic 

approaches for the 2-machine flowshop scheduling 

problem with two objectives: minimization of TFT 

subject to optimal makespan. Similarly two different 

methodologies (one is based on a Branch and Bound 

(B&B) technique of exact algorithms and other one is 

based on Palmer approach of heuristic algorithms) are 

used [16] to find the optimum solution for minimization 

of bi-criterion (makespan, weighted mean flowtime) 

objective function of three machines FSSP with 

transportation times and weight of the jobs. Recently a 

production scheduling problem in hybrid shops has been 

solved by Mousavi et al.[17], by assuming some realistic 

assumptions.  

Like the non-heuristics, many meta-heuristic 

methods like trajectory based and population based 

methods have also been proposed to solve MOPFSSPs. 

Chakravarthy and Rajendran [18] proposed a simulated 

annealing (SA) algorithm for resolving the m-machine 

FSSP to minimize makespan and maximum tardiness. 

Similarly many SA algorithms [19-21] were proposed to 

optimize various objectives like makespan, TFT, and 

total tardiness. Another SA algorithm was approached by 

Loukil et al. [22] based on m-machine case. The 

algorithm assumed objective pairs out of a number of 

objectives such as: average weighted completion time, 

makespan, average weighted tardiness, maximum 

earliness, maximum tardiness, and the number of tardy 

jobs. A novel multi-objective memetic search algorithm 

(MMSA) [23] is proposed to solve the MOPFSSP with 

makespan and total flowtime.  The performance of the 

algorithm is validated and compared with the four state-

of-the-art algorithms on a number of benchmark problem 

and provides better solutions than these compared 

algorithms. Another novel fuzzy multi-objective local 

search-based decomposition algorithm has been 

approached for solving a fuzzy-MOPFSSP for two fuzzy 

objectives, that is, the fuzzy makespan and the fuzzy total 

flow time. An extensive computational study on Taillard 

benchmarks has been conducted to compare the proposed 

algorithm with the fuzzy NSGAII and the results 

demonstrate the effectiveness of the proposed algorithm 

[24]. 

Among meta-heuristics, swarm intelligence has 

created a class of its own, which models the collective 

behavior of self-organized models and applies these 

models to solve many complex problems. Earlier works 

have adopted ant colony optimization (ACO) and particle 

swarm optimization (PSO) algorithms to simulate the 

swarm behavior of ant colonies and flocks of birds, 

respectively. There are a few researches which 

implements the PSO and ACO for solving the MOPFSSP 

[25-29] subject to makespan, TFT and completion time 

variance. Recently, a lot many algorithms have been 

proposed by modeling the intelligent behaviors of real 

bee swarms in this regard. The emerging research with 

artificial bee colony algorithms (ABC) demonstrates that 

these algorithms outperform and is equally competitive 

as compared to other population-based algorithms with 

the advantage of employing fewer control parameters 

[30-35]. Sharma et al. [36] provided a state art survey of 

ABC algorithm and its performance analysis with 

different size of population. Singh [37] has explained 

how one can solve different optimization problems using 

ABC algorithm. Recently, Amlan et al.[38] applied a 

Regional Flood Frequency Analysis (RFFA) to 33 stream 

gauging stations in the Eastern Black Sea Basin, Turkey. 

Tereshko [39] proposed a DABC algorithm for the FSSP 

with intermediate buffers (IBFSP) in order to minimize 

the maximum completion time. The DABC algorithm 

uses the effectiveness of the insertion and swap operators 

to produce neighbourhood solutions at the employed bee 

phase. From many such articles [40-42] it is clearly 

understood that, swarm intelligence provides a better 

algorithmic framework inspired by the intelligent 

behaviour of the animals, birds and social insects.  

The earlier work of PFSSP solved using DABC 

algorithm, mainly focuses on optimization of TCT 

criterion. As the DABC algorithm uses many strategies 

to find the nearest solutions in the search space, no 

detailed work has been done that counts the time 



Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 243 

 

complexity of the algorithm. To deal with this, we have 

remodelled the DABC algorithm of Tasgetiren et al.[43] 

for three different cases by the application of some 

effective strategies. The proposed algorithm is inherited 

with the hybridization of swap/insertion operations and 

construction-destruction procedures for the 

neighbourhood structures known as iterated local search 

(ILS) and iterated greedy search algorithm (IGRS) 

respectively. Through an experimental analysis, the 

proposed algorithmic cases are evaluated for best CPU 

time utilization with respect to three objectives such as: 

TCT, weighted mean tardiness (WMT), and weighted 

mean earliness (WME). Again in the same scenario we 

have tested the results of canonical ABC against DABC 

algorithm.  Genuinely due to multiple objectives, here 

ABC has been turned to multi-objective ABC (MOABC) 

with necessary improvements to solve the MOPFSSP.  

While working with multiple-objectives it is almost 

impossible to get a single compromising solution. The 

situation leads to a multi-criteria decision making 

(MCDM) scenario. MCDM is the most powerful branch 

of decision making: generally handles multiple objective 

functions together and includes a lot many approaches 

that have been applied to different problem domains to 

choose the best alternative. But major parameters like 

criterion weight in these methods are founded on 

randomness of data. Mareschal [44] has claimed that 

proper weight assignment to each criterion will lead to a 

better and more appropriate decision making framework 

for both qualitative and quantitative data. However, the 

weight assignment procedure (specifically to qualitative 

criteria) is completely dependent upon the decision 

maker’s preference and varies remarkably from one 

decision maker to other. This paper proposes TOPSIS 

using chaotic maps for generating random numbers 

during criteria adaptation to improve the decision 

accuracy. The chaotic number generators emerges a 

random number each time when needed by the decision 

maker to define the criterion weight. To maintain the 

criterion preference, we have sorted the random numbers 

and assigned them accordingly. 

The remaining parts of the paper are assembled as 

follows. Section 2 presents the problem formulation and 

assumptions. The canonical ABC and DABC algorithm 

has been illustrated in Sections 3 and 4 and Section 4 

also represents the details of the ILS algorithm and IGRS 

algorithm applied in MOPFSSP.  Section 5 encloses the 

multi-objective ABC for PFSSP. Section 6 contains the 

computational results for both algorithms with two 

different synthetic datasets. Decision making using 

chaotic-TOPSIS is illustrated in section 7. Section 8 

concludes the article with future directions. 

2 Problem description and 

assumptions 
A PFSSP is consisting of n jobs (ᴨ1, ᴨ2, ᴨ3........ ᴨn), each 

having m number of tasks, that have to be processed in 

separate machines. A schedule for the jobs is the 

assignment of tasks to time intervals on the available 

machines. Task Tji must be assigned to machine j where 

the task belongs to job i, additionally for any job i, the 

processing of task Tji cannot be started till Tji-1 has been 

completed.  

Where, 

 i ϵ(1, n) and j ϵ(1, m). 

 Ojk = processing time of job j on machine k. 

Assumptions 

(i) Jobs consist of a pre-ordered sequence of 

operations. 

(ii) At a time only one job can be processed on one 

machine. 

(iii) The job orderings are same for all machines. 

(iv) Timeslot of different job operations is 

predetermined. 

(v) Once a job starts being processed on the first 

machine, cannot be interrupted in between 

either on or between machines. 

(vi) Release time of all jobs is zero. 

As per above stated assumptions, a dummy PFSSP; 

having ‘3’ jobs, each with ‘3’ operations having some 

random processing time can be executed in ‘3’ different 

machines as follows:  

With regard to the above context: F (ᴨj), the 

flowtime of job ᴨj is same as the completion time C (ᴨj, 

m) on the machine m. So the total completion time (TCT 

(ᴨ)) of all jobs is equal to maximum of flow time or 

completion time of all jobs and is calculated as: 

 

Figure 1: A dummy PFSSP. 
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Similarly let Dj, be the due date and Cj the 

completion time of job j, for jϵn. The jobs earliness and 

tardiness can be computed by, Ej=max {Dj-Cj, 0} and 

Tj=max {Cj-Dj, 0} respectively. Hence the weighted 

mean tardiness and weighted mean earliness of different 

job sequence can be calculated as: 
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where, 

n =number of jobs 

j =job index 

jD =due date of job j. 

jC = completion time of job j.
 

jA =arrival time of job j in the shop.
  

je = earliness cost per unit time for job j 

jr =tardiness of job j penalty per unit time. 

3 Canonical ABC algorithm 
ABC, a member of swarm intelligence is a meta-heuristic 

algorithm based on the intelligent behavior of honey 

bees, introduced by Karaboga [30, 34-35, 45]. Due to its 

simplicity and good performance reported in various 

fields while optimizing both single and multi-objective 

problem, we motivated to extend its usage in PFSSP. It is 

inspired by the nature that is by the foraging behavior of 

real honey bees, their self-organization capability, and 

specially division of labor features. The canonical ABC 

algorithm has some essential components like food 

sources, nectar-amount in each source, and three kinds of 

foraging honey bees (employed bee, onlooker bee, and 

scout bee). Here every food source signifies a candidate 

solution in the search space and the fitness of these 

solutions is equivalent to the nectar-amount of those food 

sources. Employed bees go on searching random food 

positions; they also share the collected information about 

food sources among the onlooker bees through the 

waggle dance. Onlooker bees select the better sources 

(better solutions) with high nectar amount (high fitness 

value), based on the information (fitness value) from the 

employed bees. Scout bees are those employed bees 

which could not found remarkable food sources. The 

pseudo-code of canonical ABC is given below. 

 

  

 

Initialize population (P) 

Fitness evaluation (fi) 

{ 

While (cycle<=maximum number of cycle) 

{ 

Employed bee phase 

{ 

Produce neighborhoods 

Fitness evaluation selection (fi) 

Probability calculation (pi) 

} 

Onlooker bee phase 

{ 

Select a solution based on probability pi 

Produce new solution 

Fitness evaluation 

Greedy selection procedure 

} 

Scout bee phase 

{ 

Replace the abandoned one 

} 

Memorize the best    

cycle++ 

}      

 

4 Modified discrete artificial bee 

colony algorithm 
Though ABC algorithm is a proved continuous optimizer 

for various combinatorial optimization problems, later 

has also shown its efficiency towards discrete version of 

it. Here, we use a modified version of the above ABC 

algorithm to handle discrete decision variables. We have 

extended the single objective problem of Tasgetiren et al. 

[43] to a multi-objective one and the detailed of modified 

DABC has been discussed below:  

Initialization: 

The population is initialized with a random set of 

solutions, each consisting with a random permutation of 

jobs. 

ᴨ = (ᴨ1, ᴨ2, ᴨ3........ ᴨn)                                         (4)

      

Employed bee phase: 

According to the basic ABC algorithm, the employed 

bees generate their neighborhood nectar sources. Here 

for obtaining the nearer food sources, we will take the 

advantage of the adopted strategies from IG_RS 

algorithm and ILS [43]. From IG_RS algorithm we have 

borrowed the concept of construction and destruction 

procedure and the two common operators named insert 

and swap are being inherited from ILS. Each one of these 

is used for determining the neighboring solutions in the 

search space. In order to evaluate their performances, we 

will adopt three different cases with the alternative and 

combined use of these operators (insert and swap) and 

procedures (destruction- construction). For suitability, 

we named each these cases of DABC algorithm 
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separately as DABC-I, DABC-II and DABC-III 

respectively. This step attempts to improve the 

population deterministically by accepting the improved 

adjacent solutions by examining their fitness values. The 

solutions to next step are chosen on the basis of equal 

number of best solutions from each objective 

respectively to maintain the population diversity. 

Case I: 

Each nearest solution in the population is determined by 

any one of the following strategy. The selected strategy 

is applied two times separately to each permutation ᴨ in 

the population, resulting two nearest neighbors and the 

best one is selected to the next step.  

(i) Applying two-insert moves to a permutation ᴨ 

with p=2. 

(ii) Applying three-insert moves to a permutation ᴨ 

with p=3. 

(iii) Applying two-swap moves to a permutation ᴨ 

with p=2. 

(iv) Applying three-swap moves to a permutation ᴨ 

with p=3. 

Case II: 

Each nearest solution is chosen by applying any of the 

following strategy. 

(i) Applying two-insert moves to a permutation ᴨ 

with p=2. 

(ii) Applying three-insert moves to a permutation ᴨ 

with p=3. 

(iii) Applying two-swap moves to a permutation ᴨ 

with p=2. 

(iv) Applying three-swap moves to a permutation ᴨ 

with p=3. 

(v) Applying one destruct-construct procedure to a 

permutation ᴨ with destruction size x. 

Case III: 

The nearest solutions are determined by using the 

following strategy. 

(i) Applying destruct-construct procedure to a 

permutation ᴨ with destruction size x. 

Onlooker bee phase: 

This phase selects a food source based on the 

probabilities obtained from the fitness values during 

employed bee phase. The aim of this phase is to find 

further better compromising solutions by applying well 

devised local search. The probabilistic selection can be 

described as: 
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Here fiti is defined as the fitness value of the ith
 

solution compared to other solutions in the solution set. 

The solutions with a higher probability are always 

selected to the next cycle. In addition to this, almost an 

equivalent strategy to that of employed bee phase is 

employed during the onlooker bee phase to produce a 

new neighborhood solution. An efficient local search 

method has to be applied to further improve the 

candidates of the onlooker bee phase. A better food 

source has to replace the current one and become a new 

member in the population; else both are treated as non-

dominated to each other. 

Scout phase: 

In general, the scout bee phase removes the abandoned 

solutions (worst solutions) from the search space and 

tries to discover new ones with better fitness value. 

Therefore, the DABC algorithm removes a defined 

number of worst solutions and replaces them with new 

ones by the process of tournament selection in order to 

deal with local optima by avoiding the trial counter. 

During the evolution process, the solutions will be 

prioritised with respect to TCT, WMT and WME. Also 

the different cases of the employed bee phase will fall to 

different CPU utilization of the algorithm. As per the 

selection of basic ABC algorithm, an old solution is 

replaced by a new one if it is found to be superior in all 

objectives by using a greedy selection procedure.  

A common framework for DABC-I, DABC-II, and 

DABC-III as follows: 
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Figure 2:  DABC algorithm 

4.1 Local search methods: IG_RS 

algorithm and ILS algorithm 

The insert operator eliminates a job from the job pool 

(position r) and reinserts it into another position (q) in 

the same pool that is in the permutation ᴨ, such that qϵ (r, 

r-1) and the swap operator simply interchanges the 

position of two random jobs in a permutation ᴨ. Similarly 

the destruction- construction procedure of IG_RS 
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algorithm reconstructs a job pool by assigning best 

positions to a sub part of the original job sequence. Here 

the destruction phase randomly removes x number of 

jobs from the permutation ᴨ without repetition resulting 

two partial solutions ᴨx(x number of jobs) and ᴨx’ (x’=n-x 

number of jobs).  Then the construction phase adds each 

removed jobs back to the pool in the same order by 

searching its best position. The motivation of using the 

above methodologies in our algorithm is inherited from 

the efficacy of the DABC algorithm. Here the focused 

parameters are: perturbation strength p and the 

destruction size x that has to be carefully chosen. A 

perturbation is achieved by a random insertion of a job to 

another position or by swapping of some jobs randomly 

in a permutation ᴨ. Similarly choosing a larger 

destruction size for x will lead to a better result and a 

smaller one will be good for CPU time minimization. 

Tasgetiren et al. [43] have considered the perturbation 

values are as 1or 2 and the x values as 8 or 12 for 

different instances of Taillard [46]. However in our 

work, we have considered two synthetic datasets for 

small and large sized systems with variable number of 

jobs and machines. Here the p values are considered as 2 

or 3 and the x values are considered as 2 (for small sized) 

and 4 (for large size) respectively. 

5 MOABC for MOPFSSP 
The above proposed DABC algorithm is the direct 

extension of single objective DABC proposed by 

Tasgetiren et al. [43]. The algorithmic framework and 

search for local optima is much more flexible and 

effective with the advantages of local search algorithms 

in the DABC algorithm. To achieve a more accurate and 

efficient problem solving approach in the field of multi 

objective optimization; we have simulated these 

advantages to model a multi objective Pareto-based ABC 

algorithm with same objectives to solve the FSSP. The 

proposed MOABC algorithm combines the main idea of 

ABC with the above local search strategy to search the 

neighborhood structure. To apply the local search 

algorithm in the next proposed one, we have adopted one 

of the simpler one i.e., the swap () local-search instead of 

using all methods randomly. Firstly the proposed 

MOABC algorithm initiates a number of randomized job 

sequences of n jobs, and is stored in the population 

matrix. These sequences represent the random food 

sources of ABC, with certain quality and diversity. 

Secondly, an exploitation search procedure for the first 

two bee phases (employed and onlooker) is designed to 

best suit the problem and to intensify the local search 

operation. To record the updated non-dominated 

sequence emerged in each cycle, it uses a Pareto-based 
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archive set.  In addition, the population is well-adjusted 

to maintain diversity in scout bee phase by eliminating 

the worst solutions. It is seen that proposed algorithm is 

able to find the best set of solutions and a proper 

statistical analysis has also been done to evaluate the 

proposed algorithm’s performance with different inputs. 

Some important terms related to MOABC can be defined 

below. 

Pareto dominance 

Any solution S′ is said to be non-dominated to S′′ if and 

only if, 

(i) (i)The solution S′ is no worse than S′′ in all the 

objectives. 

(ii) The solution S′ is strictly better than S′′ in at 

least one objective. 

Pareto optimal solution set and Pareto optimal front 

Pareto optimal solution set is the group of all Pareto 

optimal solutions, and the respective graphical 

representation in the objective space is known as the 

Pareto optimal front. 

Archive  

An archive records the track of the non-dominated 

solutions from time to time. It is iteratively updated 

throughout the search procedure. Once a new non-

dominated solution generated, the archive is updated 

accordingly. 

5.1 Problem formulation  

The FSSP is rescheduled (fixed to similar assumptions as 

stated above) with the same three defined criterions 

(TCT, WMT and WME) and n jobs to be solved with 

ABC. As we know mostly there will be multiple 

solutions, non-dominated to one another will be emerged 

during the simultaneous optimization of multiple 

objectives (known to discover true Pareto front), we have 

done a straight forward extension of uni-objective ABC 

as well as above DABC to redesign an MOABC 

algorithm. In the employed bee phase, an exploitation 

search procedure is applied on the initialized solutions, to 

derive the non-dominated solution set. The generated 

Pareto front is maintained in an archive with the 

corresponding trial counters and will be updated from 

time to time. Onlooker bees search for more intensified 

solutions within the neighborhood of the food source in 

their memory. Finally, the abandoned solutions are 

deleted from the archive to stand with a best fitted Pareto 

front. 

5.2 Architecture  

As per the problem architecture, ‘n’ jobs are divided into 

‘m’ number of tasks, to be sequenced differently and to 

be processed in different machines. Each job sequences 

are evaluated through their fitness values against the 

individual objective functions. After the problem 

evaluation, the resulted sequences are listed out that are 

non-dominating to each other.  Figure 7 is representing 

the MOPFSSP problem architecture which needs to be 

optimized to a set of optimal job sequences as 

corresponding non- dominated set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Figure 7: MOPFSSP architecture. 

Figure 8 is represents the proposed solution strategy 

using MOABC. The proposed model generates multiple 

Pareto optimal solutions iteratively which are updated in 

an external archive time to time. Here the algorithm 

adopts the 2swap () local search strategy to generate the 

neighborhood structures in the solution space. The 

selection of the same local search procedure is based 

upon the time complexity analysis of all considered 

methods in the remodeled DABC algorithm. 

5.3 Proposed MOABC 

This section presents the algorithmic representation of 

proposed MOABC algorithm to solve MOPFSSP. 

The derived MOABC algorithm, initializes the 

population ‘ᴨ’ with ‘n’ solutions, each consisting of a 

random number of job sequences similar to the DABC 

algorithm. Each updated solutions in the population 

matrix are evaluated for the corresponding fitness value 

using the objective functions 1- 3. The generated non-

dominated set is maintained in an archive with the 

corresponding trial counters; which is updated in every 

cycle. Employed bees explore for better sources in the 

neighborhood by applying swap () operation, where two 

randomly selected jobs i and j (two random selected 

dimensions) for a random solution (sequence) k are 
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Figure 8: Proposed framework using MOABC. 
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swapped with each other. Onlooker bee selects a 

candidate source depending on its probability values 

calculated and provided by the employed bees. The 

solutions with a greater probability are shifted to the 

archive. Within a defined number of cycles, the 

employed bees whose solutions cannot be further 

improved (through a predetermined number of trials) are 

treated as abandoned ones and are deleted permanently 

from the archive. These abandoned solutions are 

calculated by the help of trial counters. If a solution in S 

is improved by the corresponding solution in S’ then the 

trial counter is set to zero (0), else it is set to one (1). 

6 Numerical simulation 
The numerical results represent the performance of both 

DABC algorithm and MOABC algorithm respectively 

with respect of TCT, WMEe and WMTr. Two different 

datasets have been initialized with little parameter 

variation. One of this has been initialized with small 

processing times and due dates named as ‘small-size 

dataset’ and the other one is named as ‘large-size’. For 

both the proposed algorithms, we have considered 

similar input datasets. 

6.1 Control parameters  

However both the algorithms require same control 

parameters except the case of abandoned solution. The 

DABC algorithm removes a defined number of worst 

solutions and replaces them with new ones in order to 

remove abandoned solutions from the population where 

as the MOABC algorithm removes those solutions based 

on a trial counter limit. 

6.1.1 Parameters of DABC 

Parameters:     Values: 

Population size    10 

Maximum iterations   50 

Number of onlookers  1/2*(colony size) 

Number of employed bees  1/2*(colony size) 

Worst solutions to be replaced             2 or 4 

6.1.2 Parameters of MOABC  

Parameters:     Values: 

Colony size    10 

Maximum iterations   50  

Number of onlookers  1/2*(colony size) 

Number of employed bees  1/2*(colony size) 

Limit for abandoned solution    20 

6.2 Description of the numerical data 

To evaluate DABC-I, DABC-II and DABC-III, two 

instances of datasets are customized with two different 

combinations of jobs and machines. With a little 

parameter variation both the datasets consider same 

population size of 10. The due date of each job is 

initialized separately with respect to two datasets. We 

have assigned same weight for both tardiness and 

earliness in both the input sets, while evaluating WMEe 

and WMTr. Again the same datasets are used to 

characterise the performance of MOABC.  

6.2.1 Small-size data 

To validate the results at an eye, a small size dataset is 

randomized with a combination of 4 jobs and 3 machines 

with an ideal parameter setting. The processing time (Oik) 

of the jobs are set within [0, 5] and the due times are set 

in [10, 15]. The earliness and tardiness weights are 

considered in the range [1, 10]. Based on the due time, 

the calculated TCT and the weights (earliness and 

tardiness), the MWT and MWE of the jobs have to be 

calculated. The destruction size has been assumed as 2. 

All these parameters, input data, corresponding statistics 

and the initial population sequence are tabulated below. 

BEGIN  

{  

Set parameters;  

Set population size;  

Initialize solutions;  

Archive=Null; 

Trial counter=Null; 

For each solution find the fitness 

value;  

Generate the non-dominated set; 

Update Archive; 

Do 

 { 

//Employed bee phase// 

Generate all employed bees and check 

their dominance relation to nearby 

solutions by swaplocal_         search 

procedure; 

Compute the Fitness value; 

Compute non-dominated set;  

Update Archive; 

Update trial counter; 

//Onlooker bee phase// 

Update the solutions using 

swaplocal_search () algorithm; 

Compute the Fitness value; 

Compute non-dominated set;  

Update Archive; 

Update trial counter; 

} While (Stop criterion=Max. no. of 

iterations);  

//Scout bee phase// 

Delete abandoned solutions 

Update Archive; 

}  

END 

Figure 9: MOABC pseudo code. 
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Parameter setting 

(i) Ojk :[1-5] 

(ii) Weight (tardiness and earliness): [1, 10] 

(iii) Population size: 10 

(iv) Destruction size: 2 

(v) Due time: [10, 15] 

Table 1 represents the processing time of 4 different 

jobs with respect to 3 machines. Also it initializes the 

expected finish time of each job and an assigned weight 

which will be further used to calculate the fitness value 

of the defined objective functions. 

Table 2 contains the statistical analysis of standard 

deviation for each job( small-sized dataset).To calculate 

the standard deviation we have summarized the 

minimum and maximum processing time of each job 

from the pool. The result shows that, standard deviation 

of each job ranges between [0, 1]. 

Using the above information a randomized job 

sequence is initialized with population size 10. As we 

have considered 4 jobs here, it can have 24 numbers of 

different possible sequences. Table 3 contains a random 

selection of 10 sequences out of these. These sequences 

will be the initial input for the proposed algorithm and 

the resulted intermediate sequences will be the further 

inputs for different iterations and bee phases.  

6.2.2 Large-size data 

The other synthetic large size dataset with population 

size 10 is generated with 10 jobs and 9 machines are set 

with the following parameter setting. Here the processing 

time of jobs are set to [0, 10]. The weights and due times 

 Job 1 Job 2 Job 3 Job 4 

Machine 1 O11=4 O12=1 O13=5 O14=2 

Machine 2 O21=3 O22=2 O23=4 O24=3 

Machine 3 O31=5 O32=2 O33=3 O34=4 

Due time 10 12 30 15 

Weight 2 3 4 2 

Table 1: Processing time of machine vs task of each job. 

Jobs Minimum Maximum Standard 

deviation 

1 3 5 0.81 

2 1 2 0.47 

3 3 5 0.81 

4 2 4 0.81 

Table 2: Statistics of the small-size dataset. 

 

Population 

sequence 

Job sequence 

1 J0 J1 J2 J3 

2 J1 J2 J3 J0 

3 J2 J3 J0 J1 

4 J3 J0 J1 J2 

5 J3 J2 J1 J0 

6 J0 J3 J2 J1 

7 J1 J0 J3 J2 

8 J2 J1 J0 J3 

9 J0 J1 J2 J3 

10 J1 J2 J3 J0 

Table 3: Initial population. 

 

 

Job 0 Job 1 Job 

2 

Job 

3 

Job 

4 

Job 

5 

Job 

6 

Job 

7 

Jo

b 8 

Job 

9 

Machine 1 

 

O11=10 O12=5 O13=8 O14=5 O15=1 O16=7 O17=2 O18=0 O19=9 O1 10=3 

Machine 2 O21=3 O22=4 O23=5 O24=8 O25=3 O26=6 O27=2 O28=5 O29=7 O2 10=4 

Machine 3 O31=5 O32=3 O33=0 O34=3 O35=5 O36=9 O37=0 O38=0 O39=2 O3 10=3 

Machine 4 O41=4 O42=2 O43=4 O44=7 O45=2 O46=3 O47=4 O48=9 O49=0 O4 10=3 

Machine 5 O51=1 O52=2 O53=1 O54=5 O55=4 O56=7 O57=2 O58=3 O59=4 O5 10=6 

Machine 6 O61=7 O62=3 O63=2 O64=5 O65=3 O66=6 O67=9 O68=4 O69=4 O6  10=2 

Machine 7 O71=3 O72=0 O73=2 O74=0 O75=5 O76=5 O77=5 O78=4 O79=2 O7  10=2 

Machine 8 O81=8 O82=4 O83=1 O84=0 O85=5 O86=9 O87=4 O88=5 O89=4 O8  10=6 

Machine 9 O91=2 O92=4 O93=1 O94=10 O95=8 O96=3 O97=4 O98=5 O99=4 O9  10=7 

Due time 80 42 75 85 95 60 10

0 

10

5 

9

0 

65 

Weight 2 3 4 6 10 1 4 5 7 9 

Table 4: Processing time of machine vs job task. 
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are initialized within [1, 10] and [50, 100] respectively. 

The destruction size has been assumed as 4. The same 

required data as per the small sized dataset are also 

represented using different tabulations in the same 

sequence. 

Parameter setting 

(i) Ojk :[0-10] 

(ii) Weight (tardiness and earliness): [1, 10] 

(iii) Population size: 10 

(iv) Destruction size: 4 

As per the parameter setting, Table 4 is finalized 

with different processing times for individual jobs with 

respect to corresponding machines. It also assumes the 

due times and job weights.  Job weights are basically the 

representative of their priorities. 

Similar to the first dataset, we have also done a 

statistical analysis of the large-size dataset in Table 5.As 

per the minimum and maximum processing time of each 

job, the standard deviation of the jobs ranges between 

[1,3]. 

Table 6 contains the initial population set consisting 

of 10 jobs. These jobs can be arranged in 10! number of 

possible ways and we have selected a random 10 out of it 

as the initial input. As compared to the small-sized 

dataset there is a very less chance of repeating the same 

sequences as the intermediate result sequences, due the 

application of different tuning operators 

(insert/swap/construct-destruct). 

6.3 Numerical results and analysis 

Using the above specified inputs the results are tabulated 

separately for each algorithm. First, the results of DABC 

are represented and then that of MOABC. Firstly the 

results are tabulated then are reflected into corresponding 

graphical representations through the help of various 

figures where ‘X’ and ‘Y’ dimensions represents the 

‘performance score’ versus ‘job sequences’ respectively. 

Each unit of ‘X’ and ‘Y’ dimension in the small-size 

dataset counts as 5 and 1 respectively, similarly it counts 

as 20 and 1 for the large- size dataset for the same 

dimensional sequence. 

6.3.1 Results of DABC Algorithm 

The tabulated results include the performance of DABC 

algorithms for individual cases with two specified inputs. 

Table 7-9 represents the final job sequences for small 

dataset corresponding to TCT, MWT and MWE and 

table 10-12 includes the results for the other input 

dataset. Table 7 and 10 includes the results of DABC-I 

algorithm with swap () and insert () operation having 

random perturbation values 2 or 3. Table 8 and 11 shows 

the results of DABC-II, that include another operation 

construct-destruct () additional to the operations of 

DABC-I. Only construct-destruct is used in DABC-III 

and the results are tabulated in Table 9 and12.  

6.3.1.1 Small-size dataset 

Table 7 contains the resulted TCT, MWT, MWE of the 

small-sized dataset for DABC-I. As mentioned, DABC-I 

uses the swap () and insert () algorithms to update the 

solution vectors. The result includes the completion time 

of every job in different sequences and TCT of each job 

sequence is equal to the completion time of the last job of 

the individual sequence. According to the initialized 

weight and due time the respective MWT and MWE has 

been calculated. 

The graphical representation of Table 7 has been 

shown in Figure 10. Each job sequences have been 

represented individually with its corresponding TCT, 

MWE, and MWT scores. 

The results of DABC-II is tabulated in Table 8.Based 

on the completion time, weight and due date of 

individual jobs   the corresponding TCT, MWT, and 

MWE values are summarized and presented here. To 

update the job sequences here all the local search 

methods (insert/swap/construction and destruction) have 

been applied randomly. 

Jobs Minimum Maximum Standard deviation 

1 1 10 2.81 

2 0 5 1.45 

3 0 8 2.40 

4 0 10 3.18 

5 1 8 1.94 

6 3 9 2.07 

7 0 9 2.40 

8 0 9 2.72 

9 0 9 2.53 

      10 2 7 1.76 

Table 5: Statistics of the large-size dataset. 

P Job sequence 

1 J

J0 

J

J1 

J

J2 

J

J3 

J

J4 

J

J5 

J

J6 

J

J7 

J

J8 

J

J9 

2 J

J1 

J

J2 

J

J3 

J

J4 

J

J5 

J

J6 

J

J7 

J

J8 

J

J9 

J

J0 

3 J

J2 

J

J3 

J

J4 

J

J5 

J

J6 

J

J7 

J

J8 

J

J9 

J

J0 

J

J1 

4 J

J3 

J

J4 

J

J5 

J

J6 

J

J7 

J

J8 

J

J9 

J

J0 

J

J1 

J

J2 

5 J

J4 

J

J5 

J

J6 

J

J7 

J

J8 

J

J9 

J

J0 

J

J1 

J

J2 

J

J3 

6 J

J5 

J

J6 

J

J7 

J

J8 

J

J9 

J

J0 

J

J1 

J

J2 

J

J3 

J

J4 

7 J

J6 

J

J7 

J

J8 

J

J9 

J

J0 

J

J1 

J

J2 

J

J3 

J

J4 

J

J5 

8 J

J7 

J

J8 

J

J9 

J

J0 

J

J1 

J

J2 

J

J3 

J

J4 

J

J5 

J

J6 

9 J

J8 

J

J9 

J

J0 

J

J1 

J

J2 

J

J3 

J

J4 

J

J5 

J

J6 

J

J7 

10 J

J9 

J

J0 

J

J1 

2

J2 

J

J3 

J

J4 

J

J5 

J

J6 

J

J7 

J

J8 

Table 6: Initial population. 



Multi-Objective Artificial Bee Colony Algorithms ... Informatica 44 (2020) 241–262 251 

 

The tabulated results of DABC-II are graphically 

represented in Figure 11. Like DABC-I, most of the 

cases have more earliness penalty than the tardiness 

penalty. While adopting selection of average number of 

solution sequences from each objective, we found some 

of the repeating sequences. These have to be treated as 

one ultimately.  Hence, the total numbers of non-

dominated sequences are 7 in number but we have 

represented all repeated sequences also. 

The results of DABC-III have been listed in Table 9. 

The three objective functions are evaluated with a 

recursive set of sequences and the fitness values are 

summarized. DABC-III explicitly uses destruct- 

construct for perturbing the solution sets. 

P  Final job sequence &  

completion time                               

TC

T 

MW

T 

MWE 

1 J3 J1 J0 J2 19 0.72 5.54 

9 11 16 19 

2 J3 J1 J2 J0 20 0.9 5.9 

 9 11 15 20 

3 J0 J1 J3 J2 21 2.0 4.36 

12 14 18 21 

4 J1 J0 J2 J3 21 1.3 5.6 

5 13 17 21 

5 J1 J2 J0 J3 22 1.54 5.27 

5 13 18 22 

6 J1 J2 J3 J0 22 1.54 5.63 

5 13 17 22 

7 J2 J1 J0 J3 23 2.36 4.0 

12 14 19 23 

8 J0 J3 J2 J1 21 2.54 4.0 

12 16 19 21 

9 J0 J3 J1 J2 21 2.54 4.36 

12 16 18 21 

10 J2 J3 J1 J0 23 2.9 4.36 

12 16 18 23 

Table 7: Results of DABC-I. 

Population  Final job 

sequence &  

completion time 

TCT MWT MWE 

1 J1 J3 J0 J2 19 0.72 6.9 

5 10 15 19 

2 J3 J0 J1 J2 19 1.27 5.27 

9 14 16 19 

3 J1 J3 J2 J0 20 0.90 6.9 

5 10 15 20 

4 J3 J2 J1 J0 21 1.63 5.27 

9 14 16 21 

5 J3 J2 J1 J0 21 1.63 5.27 

9 14 16 21 

6 J3 J2 J1 J0 21 1.63 5.27 

9 14 16 21 

7 J3 J2 J0 J1 21 1.63 4.18 

9 14 19 21 

8 J0 J2 J3 J1 22 2.72 3.63 

12 16 20 22 

9 J0 J2 J3 J1 22 2.72 3.63 

12 16 20 22 

10 J2 J0 J1 J3 23 3.18 4.0 

12 17 19 23 

Table 8: Results of DABC-II. 

 

Figure 10 Graphical representation of DABC-I. 

 

Figure 11: Graphical representation of DABC-II. 

 

Figure 12: Graphical representation of DABC-III. 
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Table 9 results are graphically represented in Figure 

12 showing a clear-cut demarcation of TCT, MWE, and 

MWT for 10 different sequences.  Apart from TCT, most 

of the non-dominated sequences have earliness penalty is 

more than tardiness penalty. 

6.3.1.2 Large-size dataset 

Table 10 stores the results of DABC-I for the large-sized 

dataset. Along with every sequence, the completion time 

of individual jobs are listed leading to the TCT score of 

that sequence. Out of 10 random sequences of 10 

different jobs, 8 sequences are having greater MWE 

score than MWT.  

Table 10 is graphically represented in Figure 13, 

showing the ratio of MWE score, MWT score, and TMT 

score of individual job sequence. Except sequence 10 and 

9, other sequences are having more MWE score than 

MWT score.  

Results of DABC-II for the second input are stored 

in Table 11. The results also show similar efficiency as 

that before. Here also the earliness cost is more in many 

sequences. 

Figure 14 represents Table 11. We can obtain the 

better sequences having minimum TCT, MWT, and 

MWE. As discussed, DABC-II uses all the local search 

methods to improve pre existing solutions. 

DABC-III results for the large-sized input are 

tabulated in Table 12. It shows construct-destruct () has 

similar efficiency to search good solutions from the 

search space. But, out of all local search algorithms this 

one is having maximum algorithmic complexity. 

Figure 15 represents DABC-III, pictorially showing 

the fitness value of different resulted sequences. 

 As discussed above the result tables and 

corresponding graphs have been represented below. 

P Final job 

sequence &  

completion time                               

TC

T 

M

WT 

M

WE 

1 J3 J0 J2 J1 20 1.45 4.54 

9 14 18 20 

2 J0 J1 J3 J2 21 2.0 4.36 

12 14 18 21 

3 J0 J3 J2 J1 21 2.54 4.0 

12 16 19 21 

4 J0 J3 J1 J2 21 2.54 4.36 

12 16 18 21 

5 J3 J2 J0 J1 21 1.63 4.18 

9 14 19 21 

6 J3 J2 J0 J1 21 1.63 4.18 

9 14 19 21 

7 J0 J2 J3 J1 22 2.72 3.63 

12 16 20 22 

8 J2 J3 J1 J0 23 2.9 4.3 

12 16 18 23 

9 J2 J3 J1 J0 23 2.9 4.3 

12 16 18 23 

1

0 

J0 J2 J1 J3 22 2.72 4.36 

12 16 18 22 

Table 9: Results of DABC-III. 

P  

Final job sequence &  completion time 

TCT MWT MWE 

1 J7 J4 J3 J5 J6 J8 J9 J0 J1 J2 92  5.21 14.43 

35 43 53 64 69 73 82 85 91 92 

2 J7 J2 J4 J5 J6 J3 J8 J9 J0 J1 96 6.11 14.6 

35 36 48 64 69 79 83 90 92 96 

3 J7 J5 J8 J4 J9 J0 J1 J2 J3 J6 98 7.49 11.94 

35 55 60 69 76 78 83 84 94 98 

4 J0 J1 J6 J3 J4 J5 J2 J7 J8 J9 100 7.25 12.84 

43 49 55 65 73 80 81 88 92 100 

5 J1 J2 J3 J4 J8 J6 J7 J5 J9 J0 104 8.68 14.0 

27 29 56 67 71 75 81 91 101 104 

6 J9 J7 J0 J1 J2 J8 J3 J4 J5 J6 106 8.84 17.8 

36 43 49 55 56 62 80 91 101 106 

7 J0 J1 J2 J9 J3 J4 J5 J6 J7 J8 106 9.7 12.52 

43 49 50 61 71 81 91 96 102 106 

8 J5 J6 J9 J8 J0 J7 J1 J2 J3 J4 107 10.17 9.0 

55 60 69 73 76 85 88 89 99 107 

9 J1 J2 J3 J5 J4 J6 J7 J8 J9 J0 106 9.7 9.11 

27 29 56 74 84 88 93 97 104 106 

10 J8 J2 J0 J3 J4 J5 J6 J7 J9 J1 107 9.66 11.9 

36 37 55 65 74 84 89 95 103 107 

Table 10: Results of DABC-I. 
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6.3.1.3 Discussion and time complexity analysis of 

DABC algorithm 

The DABC algorithm is tested under three types of 

scenarios using the local search algorithms such as two-

swap (), three-swap (), two- insert (), three-insert () and 

destruct-construct () iteratively. Each time a random 

local search algorithm is used to find out nearest optimal 

solutions. To achieve the population diversity we have 

used the selection strategy of selecting proportionately 

equal number of solutions from each objective function. 

In the small-sized input data we see that many times the 

resulted sequences are being repeated because of less 

number of jobs, which is a rare in the large one. We 

checked the complexity of these algorithms in terms of 

number of machines (M) and number of jobs (N). 

P Final job sequence &  completion time TCT MWT MWE 

1 J9 J0 J1 J7 J3 J4 J5 J6 J8 J2 94 6.07 14.82 

36 46 52 58 68 76 84 89 93 94 

2 J7 J8 J9 J4 J1 J0 J2 J3 J6 J5 95 5.3 20.49 

35 39 49 57 61 63 64 74 85 95 

3 J6 J3 J4 J5 J7 J2 J8 J9 J0 J1 95 5.74 13.64 

32 45 56 66 73 74 78 86 89 95 

4 J3 J4 J8 J6 J7 J0 J9 J5 J1 J2 95 6.8 13.6 

43 54 58 62 68 73 84 89 94 95 

5 J6 J2 J3 J4 J5 J8 J7 J1 J9 J0 100 7.5 13.47 

32 33 53 64 74 79 85 89 97 100 

6 J8 J9 J0 J2 J7 J1 J3 J4 J5 J6 109 7.78 15.82 

36 49 54 55 66 70 80 88 96 109 

7 J8 J4 J0 J5 J6 J7 J9 J1 J2 J3 105 8.7 10.6 

36 51 54 71 76 82 90 94 95 105 

8 J5 J6 J7 J8 J9 J0 J3 J2 J1 J4 104 9.17 8.76 

55 60 66 70 78 81 91 92 96 104 

9 J5 J2 J6 J0 J7 J8 J9 J1 J3 J4 111 11.13 9.45 

55 56 62 69 77 81 89 93 103 111 

10 J8 J2 J0 J3 J4 J5 J6 J7 J9 J1 107 9.66 11.9 

36 37 55 65 74 84 89 95 103 107 

Table 11: Results of DABC-II. 

Population 

individual 

Final job sequence &  completion time TCT MWT MWE 

1 J6 J3 J4 J7 J5 J8 J9 J1 J0 J2 93 5.7 13.6 

32 45 56 61 71 76 85 89 92 93 

2 J1 J9 J3 J4 J5 J6 J7 J8 J2 J0 94 5.4 14.47 

27 42 52 62 72 77 83 87 88 94 

3 J6 J7 J3 J9 J0 J1 J2 J5 J4 J8 95 5.54 19.31 

32 39 49 56 60 66 67 81 91 95 

4 J6 J7 J3 J9 J0 J1 J2 J5 J4 J8 95 5.54 19.31 

32 39 49 56 60 66 67 81 91 95 

5 J7 J6 J3 J8 J9 J0 J1 J2 J5 J4 96 5.64 19.0 

35 43 53 57 64 66 70 71 86 96 

6 J4 J6 J0 J1 J2 J3 J5 J7 J8 J9 99 6.2 19.17 

36 40 47 53 54 64 80 87 91 99 

7 J3 J4 J7 J5 J6 J8 J9 J0 J1 J2 97 7.52 11.19 

43 54 59 69 74 78 87 90 96 97 

8 J5 J3 J1 J6 J7 J8 J9 J0 J2 J4 101 8.41 8.43 

55 65 69 73 78 82 89 91 92 101 

9 J5 J7 J8 J9 J0 J1 J6 J2 J3 J4 106 9.96 9.19 

55 62 66 74 77 83 87 88 98 106 

10 J7 J8 J5 J9 J0 J1 J2 J3 J4 J6 106 9.3 9.9 

35 39 64 74 77 83 84 94 102 106 

Table 12: Results of DABC-III. 
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We have used these functions alternatively in 

DABC-I, DABC-II and DABC-III, and see that using 

construct-destruct (), the algorithm is not giving any 

significant improvement in the result. Based on the time 

complexity of different local search methods, we 

conclude that DABC-I is better than DABC-II and 

DABC-II is better than DABC-III. 

6.3.2 Results and discussions through MOABC 

While optimizing three objectives through MOABC, a 

number of non-dominated solutions are resulted and are 

listed below with their respective Pareto fronts. Here we 

do not find any abandoned solutions as there was no 

solution in the final archive having trial counter value 

more than 20. In the small-size dataset there are ‘7’ non-

dominated sets and the large one is resulting 10 such 

solutions in the resulting Pareto front.  

 

Figure 15: Graphical representation of DABC-III. 

 

Figure 16: Pareto front (small-size). 

 

Figure 17: Pareto front (large-size). 
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Local-search 

algorithms 

Time complexity 

Two-swap O(MN) 

Three-swap() O(MN) 

Two-insert() O(MN) 

Three-insert() O(MN) 

Construct-destruct() O(MN2) 

Table 13: Time complexity analysis of local search 

algorithms. 

 

Figure 13: Graphical representation of DABC-I. 

 

Figure 14: Graphical representation of DABC-II. 
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6.3.2.1 Small-size dataset 

7 non-dominated solutions emerged from the first dataset 

and are listed in Table 14. These solutions can be further 

evaluated by the decision maker to reach at the definite 

goal. 

The resulted non-dominated set of table 14 has been 

depicted to the corresponding Pareto front in figure 16. 

The 3 objectives fitness values show a clear graphical 

visualization of the non-dominated set.  

6.3.2.2 Large-size dataset 

Table 15 stores the 10 non-dominated solutions emerged 

from the large-sized dataset. Each solution is represented 

with individual job completion time and finally the TCT 

value of the same sequence, followed by MWT and 

MWE respectively.  

Each best fitted solution for the large-sized dataset is 

captured as its Pareto front and is represented in figure 

18, with its respective fitness values. 

The MOABC also yields equally compromising 

optimized solutions as that of DABC algorithm. The 

results reveal that the proposed algorithms are superior 

enough to deal with multi-objectives with a little 

parameter variation to the canonical ABC. It is a straight 

forward extension of uni-objective ABC with mixing 

advantages of local search procedure from the proposed 

DABC algorithm. We have just applied one of the 

simplest local search procedure that is two-swap () 

procedure to optimize the local optima which definitely 

helps in reducing the algorithmic complexity. 

From the result analysis, apart from the completion 

time, it is seen that most of time the earliness penalty is 

more than the tardiness penalty. Hence with a required 

priority level of all the objectives a decision maker can 

easily go for making a balanced decision for him by 

applying a suitable MCDM method. 

7 Decision making with chaotic-

TOPSIS 
After generating successful optimized solution set, we 

cannot avoid for selecting an appropriate one among 

these during the decision making process. MCDM is a 

successful tool for decision making with conflicting 

P Final job sequence 

&  completion time 

TCT MW

T 

MW

E 

1 J0 J1 J3 J2 21 2.0 4.36 

12 14 18 21 

2 J3 J1 J2 J0 20 0.9 5.9 

9 11 15 20 

3 J1 J3 J0 J2 19 0.72 6.9 

5 10 15 19 

4 J3 J2 J1 J0 21 1.63 5.27 

9 14 16 21 

5 J1 J3 J2 J0 20 0.90 6.9 

5 10 15 20 

6 J3 J2 J0 J1 21 1.63 4.18 

9 14 19 21 

7 J1 J2 J3 J0 22 1.54 5.63 

5 13 17 22 

Table 14: Non-dominated job sequence. 

P Final job sequence &  completion time TCT MWT MWE 

1 J2 J3 J4 J5 J6 J7 J8 J9 J0 J1 104 8.96 10.27 

24 51 62 72 77 83 87 95 98 104 

2 J3 J4 J5 J6 J7 J8 J9 J0 J1 J2 97 7.54 10.60 

43 54 64 69 75 79 87 90 96 97 

3 J4 J5 J6 J7 J8 J9 J0 J1 J2 J3 99 7.19 12.86 

36 56 61 67 71 79 82 88 89 99 

4 J5 J6 J7 J8 J9 J0 J1 J2 J3 J4 106 9.8 9.47 

55 60 66 70 78 81 87 88 98 106 

5 J6 J7 J8 J9 J0 J1 J2 J3 J4 J5 101 6.54 21.29 

32 39 43 51 57 63 64 80 91 101 

6 J0 J1 J5 J3 J4 J2 J6 J7 J8 J9 109 10.39 5.03 

43 49 70 80 88 89 93 98 102 109 

7 J1 J2 J6 J4 J5 J3 J7 J8 J9 J0 99 7.37 15.01 

27 29 50 60 71 81 86 90 97 99 

8 J2 J3 J7 J5 J6 J4 J8 J9 J0 J1 107 10.15 8.76 

24 51 61 74 79 89 93 100 102 107 

9 J4 J5 J9 J7 J8 J6 J0 J1 J2 J3 99 7.19 11.21 

36 56 66 71 75 79 82 88 89 99 

10 J0 J1 J5 J4 J3 J2 J6 J7 J8 J9 111 11.05 4.29 

43 49 70 80 90 91 95 100 104 111 

Table 15: Non-dominated job sequence. 
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criterion. Various methods show their respective 

efficiency in this regard. By a comparative survey we 

have concluded to decide the final optimal solution here 

with in our problem using TOPSIS method which really 

seems to be fit .We have summarized some of the recent 

TOPSIS applications followed by the discussions of our 

motivation. 

Li et al. [47] presents a new method based on 

TOPSIS and response surface method (RSM) for MCDM 

problems with interval number. Similarly Madi et al. [48] 

provided a detailed comparison of TOPSIS and Fuzzy-

TOPSIS in a systematic and stepwise manner. Sotoudeh-

Anvari [49] suggested a stochastic multi-objective 

optimization model for assigning resource and time in 

order to search the individuals who are trapped in 

disaster regions. To reduce the heavy computation of the 

model, two efficient MCDM techniques, i.e. TOPSIS and 

COPRAS are employed which tackles the ranking 

problem. Zavadskas et al. [50] reviewed 105 papers 

which developed, extended, proposed and presented 

TOPSIS approach for solving DM problems from 2000 

to 2015. Recently Wu et al.[51] proposes an improved 

methodology for handling ships which uses TOPSIS 

method to make the final decision.  

TOPSIS 

TOPSIS was developed by Hwang and Yoon [52] in the 

year of 1981 as an alternative to the elimination and 

choice translating reality (ELECTRE) method. The basic 

idea of TOPSIS is quite simple and it has been originated 

from a displaced ideal point from which the selected 

solution has shortest distance [53-54]. Further it is 

refined [52] to the rank based method by assigning 

specific orders to the available alternatives. The whole 

concept is based on the two artificial ideal points; that is 

the ultimate solution is measured by having longest 

distance from the positive ideal solution (PIS) and the 

shortest from the negative ideal solution (NIS).  Hence a 

preference order of all alternatives is generated as per 

their relative closeness to the ideal solutions. As 

concluded by Kim et al. [55] and our observations, basic 

TOPSIS advantages are recorded as:  

(i) It is an accepted logic that is focused to 

rationale of human choice;  

(ii) A scalar value justifies  both the ideal 

alternatives together;  

(iii) Simple algorithmic framework and can easily be 

coded to the spreadsheet;  

(iv) A straightforward performance evaluation of all 

alternatives against the defined criteria which 

can be clearly visualized and represented for 

two or more dimensions.  

The above defined advantages make TOPSIS an 

omnipresent MCDM technique as compared with rest 

techniques [52]. In fact it is a utility-based method that 

evaluates every alternative directly depending on the 

available data in the decision matrices and weights [56]. 

Apart from this, the simulation comparison [57] of 

TOPSIS method signifies that it has the fewest rank 

reversals apart from rest methods in the category. Thus, 

TOPSIS is chosen as the backbone of MCDM. 

The preliminary issue with the method is the 

normalized decision matrix operation, where randomness 

is achieved while assigning the criterion weights. Hence 

a narrow gap derived between the performed measures 

due to the weighted normalized value of the decision 

matrix. It can be advantageous to substitute this 

randomness with a suitable chaotic map. Chaos has a 

very similar property to randomness with better statistical 

and dynamical characteristic. Such a dynamic mixing is 

truly appreciated to enhance solutions potentiality by 

touching every mode in a multi-objective landscape. 

Hence the use of a well-suit chaotic map in TOPSIS can 

be definitely helpful to enhance the decision making by 

generating preferred randomness in criterion weight. 

Chaotic maps 

Simulation of complex phenomena such as: numerical 

analysis, decision making, sampling, heuristic 

optimization etc. needs random sequences for a longer 

period and good uniformity [58]. Chaotic map is a 

deterministic, discrete-time dynamic system that is 

considered as source of randomness, which is non-

period, bounded and non-converging [59-60]. However 

the nature of chaotic maps is apparently random, 

unpredictable and it has a very sensitive dependence on 

its initial condition and parameter [58].  

A chaotic map can be represented as: 

)12(...3,2,1,0,1,0),(1 ==+ kxxfx kkk   

Different selected chaotic maps that produce chaotic 

numbers in [0, 1] are listed below in table 16 [59-60]. 

Chao Map Definition 

Logistic 

Map 
)1(41 nnn xxx −=+  

Circle Map )1mod()2/5.0(2.11 nnn xxx −+=+  

Gauss Map  

 kkk

n

n

n

xxx

otherwisex

x
x

/1/1)1mod(/1

),1mod(/1

0,0

−=







 =

=
 

 

Henon 

Map 1

2

1 3.04.11 −+ +−= nnn xxx  

Sinusoidal 

Map 
)sin(1 nn xx =+  

Sinus Map )sin(2

1 )(3.2 nx

nn xx


=+  

Tent Map 




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
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otherwisexx
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),1(3/10
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Table 16: Different Chaotic Maps. 
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Again it is a challenging task to find out a proper and 

suitable chaotic function to well fit to our decision 

making problem. Researchers used a number of chaotic 

sequences to tune various parameters in various meta-

heuristic optimization algorithms such as particle swarm 

optimization[61-62], genetic algorithms[63], harmony 

search[60], imperialist competitive algorithm [64], ant 

and bee colony optimization [65, 59], firefly algorithm 

[62] and simulated annealing [66]. Each research in 

different direction has shown some promise once the 

right set of chaotic maps is applied. Gandomi and Yang 

[67] founds sinusoidal map is the most suitable for the 

bat algorithm to replace with loudness and pulse rate 

respectively. Similarly Gandomi et al. [61] have 

experimented twelve different chaotic maps to tune the 

major parameters of PSO. They revealed sinusoidal map 

and singer map perform better result in comparison to the 

rest. Talatahari et al.[64] proposed in a novel chaotic 

improved imperialist competitive algorithm by investing 

seven different chaotic maps and sinusoidal and logistic 

maps are found as the best choices. Also in Gandomi et 

al. [62] experimentally revealed sinusoidal map and 

gauss maps are the best performed chao to be adopted for 

firefly algorithm. Most experimental results proved 

sinusoidal as a common better performing random 

generator. By watching the efficiency of sinusoidal map, 

we have used the same to find out the random numbers in 

the TOPSIS weight assignment procedure. Again it is 

important for the decision maker to maintain the priority 

level of all criterions. To cope up with this we have 

sorted the random numbers and assigned them to the 

respective criterions. 

Decision results  

To finalize the decision results we have generated a 

set of three chaotic numbers using sinusoidal map and 

sorted them to represent different criterion weights. With 

respect to each decision matrix we have allotted the same 

criterion weight, in a preference order i.e., {0.5, 0.3, 0.2}. 

Here we have assumed of TCT with highest preference, 

Altern

-ative 

TCT MWT MWE Closeness 

coeff  

Rank 

A1 92 5.21 14.43 0.2960 10 

A2 96 6.11 14.6 0.3667 9 

A3 98 7.49 11.94 0.4132 8 

A4 100 7.25 12.84 0.4320 7 

A5 104 8.68 14.0 0.6617 3 

A6 106 8.84 17.8 0.8070 1 

A7 106 9.7 12.52 0.6873 2 

A8 107 10.17 9.0 0.5862 5 

A9 106 9.7 9.11 0.5640 6 

A10 107 9.66 11.9 0.6613 4 

Table 20: Alternatives from DABC-I. 

Altern

-ative 

TCT MWT MWE Closeness  

coefficient  

Rank 

A1 94 6.07 14.82 0.2946 9 

A2 95 5.3 20.49 0.4250 6 

A3 95 5.74 13.64 0.2352 10 

A4 95 6.8 13.6 0.3047 8 

A5 100 7.5 13.47 0.3839 7 

A6 109 7.78 15.82 0.5232 3 

A7 105 8.7 10.6 0.4484 4 

A8 104 9.17 8.76 0.4466 5 

A9 111 11.13 9.45 0.5918 1 

A10 107 9.66 11.9 0.5668 2 

Table 21: Alternatives from DABC-II. 

Altern-

ative 

TCT MWT MWE Closeness 

coefficient  

Rank 

A1 19 0.72 5.54 0.1524 10 

A2 20 0.9 5.9 0.2130 9 

A3 21 2.0 4.36 0.5606 5 

A4 21 1.3 5.6 0.3238 8 

A5 22 1.54 5.27 0.4201 7 

A6 22 1.54 5.63 0.4302 6 

A7 23 2.36 4.0 0.7036 4 

A8 21 2.54 4.0 0.7278 3 

A9 21 2.54 4.36 0.7475 2 

      A10 23 2.9 4.36 0.8476 1 

Table 17: Alternatives from DABC-I. 

Altern-

ative 

TCT MWT MWE Closeness  

coefficient  

Rank 

A1 19 0.72 6.9 0.2462 7 

A2 19 1.27 5.27 0.2515 6 

A3 20 0.90 6.9 0.2704 5 

A4(A5,A6) 21 1.63 5.27 0.3907 3 

A7 21 1.63 4.18 0.3604 4 

A8 (A9) 22 2.72 3.63 0.6813 2 

A10 23 3.18 4.0 0.7755 1 

Table 18: Alternatives from DABC-II. 

Altern- 

ative 

TCT MWT MWE Closeness  

coefficient  

Rank 

A1 20 1.45 4.54 0.179

6 

8 

A2 21 2.0 4.36 0.396

7 

6 

A3 21 2.54 4.0 0.668

8 

5 

A4 21 2.54 4.36 0.687

3 

4 

A5(A6) 21 1.63 4.18 0.198

3 

7 

A7 22 2.72 3.63 0.756

4 

3 

A8(A9) 23 2.9 4.3 0.946

1 

1 

A10 22 2.72 4.36 0.835

6 

2 

Table 19: Alternatives from DABC-III. 
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then MWT and lastly MWE. The decision matrices are 

nothing but various resulted non-dominated sequences of 

TCT, MWT and MWE. For every individual decision 

matrix we have generated the closeness coefficient value 

w.r.t both the ideal solutions and so as the ranks. Firstly 

we have calculated the ranks of all the alternatives 

generated from DABC-I, DABC-II and DABC-III for the 

small-size dataset followed by the large one. Lastly the 

alternatives from MOABC are evaluated in the same 

sequence. 

DABC (Small-sized) 

Table 17 represents the alternatives generated from 

DABC-I. 10 alternatives are evaluated with the proposed 

chao-TOPSIS procedure and the ranks are presented. 

Alternative A10 is having highest closeness coefficient 

value than all, hence is chosen as rank 1 alternative for 

the decision maker. 

The non-dominated sequences of DABC-II (Table 

18) are having some of the repeating sequences; hence 

they are treated as one single alternative. Alternatives A4, 

A5, A6 are the same sequences and that of alternatives A8 

and A9. These repeating sequences are the result of 

selecting the proportionately best fitness values from 

each objective function and application of local search 

algorithms repeatedly to a small sized data set. Hence 

altogether we have evaluated 7 sequences and the last 

alternative A10 is the best ranked. 

Similarly table 19 contains the resulting sequences of 

DABC-III. Out of 10 sequences two pairs ((A5=A6) and 

(A8=A9)) are repeated sequences. Hence 8 sequences are 

evaluated against the three objectives using chaotic-

TOPSIS. The calculation shows, the seventh sequence 

i.e. A8 ( or A9) is having rank 1. 

DABC (Large-size Dataset) 

The large-sized synthetic dataset has again 3 decision 

matrices from DABC-I, DABC-II and DABC-III to be 

evaluated. Table 20 contains the decision matrix resulted 

from DABC-I. The 10 different alternatives (sequences) 

are having different closeness coefficient values   and A6 

is the highest ranked alternative. 

The following decision matrix of Table 21 is the 

resulted optimized sequence of DABC-II for the large 

input data. Each alternative are processed to check the 

best set of functional values from the calculated 

closeness coefficient value.  Here alternative A9 is found 

to be superior one. 

The non-dominated sequence of DABC-III is 

represented as the decision matrix in Table 22 with 10 

alternatives. Two alternatives A3 and A4are having same 

sequences. Hence altogether 9 different sequences are 

processed and according to chaotic-TOPSIS, A9 is the 

best one to be chosen by the decision maker. 

MOABC 

Table 23 contains the non-dominated sequence of 

MOABC for the small sized data set. It is consisting of 7 

alternatives and chaotic-TOPSIS valuates A1 as the 

suitable alternative for the decision maker among all. 

Altern

-ative 

TCT MWT MWE Closenes

s coeff  

Rank 

A1 21 2.0 4.36 0.7498 1 

A2 20 0.9 5.9 0.2380 7 

A3 19 0.72 6.9 0.2529 6 

A4 21 1.63 5.27 0.6696 2 

A5 20 0.90 6.9 0.3065 5 

A6 21 1.63 4.18 0.6129 4 

A7 22 1.54 5.63 0.6554 3 

Table 23: Alternatives from MOABC (Small-sized). 

Altern-

ative 

TCT MWT MWE Closeness 

coefficient  

Rank 

A1 104 8.96 10.27 0.1132 6 

A2 97 7.54 10.60 0.1098 7 

A3 99 7.19 12.86 0.1441 4 

A4 106 9.8 9.47 0.8105 1 

A5 101 6.54 21.29 0.2516 2 

A6 109 10.39 5.03 0.0744 10 

A7 99 7.37 15.01 0.1750 3 

A8 107 10.15 8.76 0.1015 8 

A9 99 7.19 11.21 0.1192 5 

A10 111 11.05 4.29 0.0847 9 

Table 24: Alternatives from MOABC (Large-sized). 

Altern

-ative 

TCT MWT MW

E 

Closen

ess  

coeffic

ient  

Rank 

A1 94 6.07 14.82 0.2946 9 

A2 95 5.3 20.49 0.4250 6 

A3 95 5.74 13.64 0.2352 10 

A4 95 6.8 13.6 0.3047 8 

A5 100 7.5 13.47 0.3839 7 

A6 109 7.78 15.82 0.5232 3 

A7 105 8.7 10.6 0.4484 4 

A8 104 9.17 8.76 0.4466 5 

A9 111 11.13 9.45 0.5918 1 

A10 107 9.66 11.9 0.5668 2 

A1 93 5.7 13.6 0.2540 9 

A2 94 5.4 14.47 0.2760 8 

A3(A4) 95 5.54 19.31 0.4281 6 

A5 96 5.64 19.0 0.4291 5 

A6 99 6.2 19.17 0.4806 3 

A7 97 7.52 11.19 0.3873 7 

A8 101 8.41 8.43 0.4526 4 

A9 106 9.96 9.19 0.6012 1 

A10 106 9.3 9.9 0.5810 2 

Table 22: Alternatives from DABC-III. 
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The non-dominated sequences of MOABC for the 

large data input is consisting of 10 sequences and are 

represented in Table 24. After checking the closeness 

coefficient values A4 is found as the best alternative 

among all. 

The use of generating random numbers using 

different chaotic functions has been one of the 

remarkable techniques to tune the parameters in various 

algorithms in many fields, and this has become an active 

research topic in the recent optimization literature. By 

watching its advantage, we have introduced the concept 

of chaotic map to the standard TOPSIS, and have 

checked for the best alternative among a set of non-

dominated solutions. The decision makers will be 

definitely confident enough to take a right decision 

among the conflicting ones using the approach. 

8 Conclusions and future research 
The DABC and MOABC algorithms were coded and 

applied to the multiple instances of dataset ranging from 

3 jobs with 3 machines to 10 jobs and 9 machines. In this 

paper, we considered the MOPFSSP under the multiple 

(three) criteria. The DABC algorithm is hybridized with 

a variant of iterated greedy algorithms employing a local 

search procedure based on insertion (), swap () and 

destruct- construct () neighborhood structures. In 

addition, we also presented an extended version of ABC 

algorithm to the proposed MOABC algorithm employed 

through a particular local search procedure with reduced 

complexity. Our proposal is having a significant 

application of DABC to check the time complexity of 

different local search procedures. Hence, we are 

motivated to use simple swap () operation in local search 

procedure in the MOABC algorithm.  The performances 

of both the proposed algorithms were tested by using 

different instances of datasets and it has been shown that 

the performances of both DABC and MOABC 

algorithms are highly competitive with the best 

performing existing literature. Also we have extended 

our work to optimize the non-dominated solutions to a 

single optimal solution using chaotic-TOPSIS method to 

derive the optimal decision in the field of MCDM. The 

proposed approach will definitely help the decision 

makers to solve various MCDM problems in future.  

Further the problem of FSSP can be extended with no-

wait flowshop, blocking flowshop and no-idle flowshop, 

etc. Apart from three criteria we may practically have a 

many objective (MaO) PFSSP, which will obviously 

increase the number of non-dominated solutions in the 

search space. We may further work to find other 

effective ways to make a right decision for the decision 

makers to reach at a definite goal. 
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