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A sequential evolution of actions, in conjunction with the preconditions of their environment and their 
effects, are all depicted by Activation Timed Influence Nets.  In this paper, we develop two algorithms 
for the optimal selections of such actions, given a set of preconditions.  A special case for the two algo-
rithms is also considered where the selection of actions is further constrained by the use of dependencies 
among them. The two algorithms are based on two different optimization criteria:  one maximizes the 
probability of a given set of target effects, while the other maximizes the average worth of the effects’ 
vector.

Povzetek: Predstavljena sta dva algoritma za optimizacijo akcij v časovno odvisnih mrežah.

1 Introduction
We consider the scenario1 where a sequence of actions 
needs to be initialized towards the materializing of some 
desirable effects. As depicted in Figure 1, each action is 
supported by a set of preconditions and gives rise to a set 
of effects; the latter become then the preconditions of the 
following action(s) which, in turn, gives rise to another 
set of effects. Such sequential evolution of actions is 
termed Activation Timed Influence Nets (ATINs), where 
the action performers may be humans. ATINs are an ex-
tension of an earlier formalism called Timed Influence 
Nets (TINs) [6-12, 20-27, 30, 31] that integrate the no-
tions of time and uncertainty in a network model. The 
TINs are comprised of nodes that represent propositions 
(i.e., pre-and post-conditions of potential actions as well 
as assertions of events which may indirectly describe 
such actions), connected via causal links that represent 
relationships between the nodes, without any explicit 
representation of actions.   TINs have been experimen-
tally used in the area of Effects Based Operations (EBOs) 
for evaluating alternate courses of actions and their effec-
tiveness to mission objectives in a variety of domains, 
e.g., war games [20-22, 25], and coalition peace opera-
tions [24, 27], to name a few. A number of analytical 
tools [6-12, 23, 24, 27, 30] have also been developed 
over the years for TIN models to help an analyst update 
conditions/assertions, represented as nodes in a TIN, to 
map a TIN model to a Time Sliced Bayesian Network for 
incorporating feedback evidence, to determine best set of 
pre-conditions for both timed and un-timed versions of 
Influence Nets, and to assess temporal aspects of the in-

                                                          
1 This work was supported by the Air Force Office of Scientific 
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1-0388.

fluences between nodes. A recent work [31] on TINs, 
underlying constructs and the computational algorithms, 
provides a comprehensive analytical underpinning of the 
modeling and analysis approach.

Figure 1: Network Representation of an Activation 
Timed Influence Net (ATIN)

In contrast to their predecessors (i.e., TINs), ATINs 
explicitly incorporate as nodes the mechanisms and/or 
actions that are responsible for changes in the state of a 
domain; other nodes represent preconditions and effects 
of actions.  A set of preconditions may support a number 
of different actions, each of which may lead to the same 
effects, with different probabilities and different 
costs/awards, however. The objective is to select an op-
timal set of actions, where optimality is determined via a 
pre-selected performance criterion. In this paper, we pre-
sent two algorithms which attain such an objective. We 
note that an effort to develop an action selection algo-
rithm is also presented in [1]. 

The organization of the paper is as follows:  In Sec-
tion 2, we present the core formalization of the problem, 
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including two different optimization criteria.  In Section 
3, we derive the two algorithms which address the latter 
criteria.  In Section 4, we express the extensions of the 
two algorithms to the network propagation scenario.  In 
Section 5, we include numerical evaluations while in
Section 6, we draw some conclusions.

1.1 Related Work
ATINs include action planning. In the domain of ac-

tion planning, classical planners assume that the effects 
of an action are known with certainty and generate a set 
of actions that will achieve the desired goals [19].  Some 
planners do monitor for errors as actions are executed, 
but no action adaptations are incorporated [29]. Other 
planners assign probabilities to the effects of actions [2, 
13, 14, 16, 28], but provide no mechanisms for reacting 
to changes in the environment. Reactive planners [5, 15,
17, 18] are designed to select and execute actions in re-
sponse to the current state of the world, but, with a few 
exceptions [3], [4], they do not use probabilistic informa-
tion to determine the likelihood of success of the actions.  
In [1], probabilistic information is used, in an effort to 
deal with environmental uncertainties, but no optimal 
action selection strategies are considered and/or pro-
posed. 

The ATIN formalism in this paper is similar to an 
earlier work by Sugato Baghci et al [1] on planning under 
uncertainty. The similarity, however, stops with the graph 
representation of preconditions, actions and their effects. 
Similar parallels can also be drawn with other graph-
based planning approaches, e.g. GraphPlan 
(http://www.cs.cmu.edu/~avrim/graphplan.html). The 
approach in this paper represents a new formalism and is 
based on well established statistical results.

2 Problem formalization – core
In this section, we consider a modular core problem.  We 
initially isolate a single action with its supporting pre-
conditions and its resulting effects, as depicted in Fig. 2.

Figure 2: A Single Action ATIN
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Let us now assume mutually exclusive actions, 

which are supported by the same preconditions, to lead to 
the same set of effects (as shown in Fig. 3). Let       
{aj}1≤j≤k  be this set of actions and let 1

n
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m

1Y denote 
the common status random vectors of preconditions ver-
sus effects, respectively. Let the utility functions for each 
action in the set {aj}1≤j≤k be nonnegative; let also 

)(yU m

10
be nonnegative.

Figure 3: A Single Level ATIN

We now state multiple versions of the core problem, 
based on two different optimization criteria. Problem 3a
and 3b are the constrained versions of the first two prob-
lems.
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Problem 1 (Optimal Path Problem)

Given a preconditions vector value n
1x , given an effects 

vector value 1
my , find the maximum probability action 

that connects them. That is, find the action that maximiz-

es the conditional probability )x|P(y  n
1

m
1 .

Problem 2 (Average Utility Maximization)

Given a preconditions vector value n
1x , find the action or 

actions that maximize the effects’ average utility.

Problem 3a (Optimal Path Problem with Constrained Actions)

Given a preconditions vector value n
1x , given an effects 

vector value 1
my , and an action dependency matrix, find 

the maximum probability action that connects them. That 
is, find the action that maximizes the conditional proba-

bility )x|P(y  n
1

m
1 . In this case, only those action combi-

nations are considered that are allowed by the constraints 
in the dependency matrix.

Problem 3b (Average Utility Maximization with Con-
strained Actions)

Given a preconditions vector value n
1x , find the action or 

actions that maximize the effects’ average utility. As in
Problem 3a, only those action combinations are consi-
dered that are allowed by the constraints in the depen-
dency matrix.

Action Dependency Matrix (ADM)

An action dependency matrix is a tool which defines de-
pendency among actions in the network. It reduces the 
number of combinations of actions by considering only 
those allowed by the dependency matrix. It also reduces 
significantly the amount of calculations required to ob-
tain the optimal path. The value of the variable aij reflects 
the existence or absence of dependency between actions 
ai and aj, where aij equals 1; for positive dependency and 
equals 0; for negative dependency, and nji,1  , where 

‘n’ represents the total number of actions in the network. 
The elements of an ADM are determined as follows:
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where, level l in an ATIN corresponds to a set of pre-
conditions (C1, C2…Cn) followed by a set of actions (a1, 
a2…ak) and a set of effects (e1, e2… em) (as shown in Fig. 
3). The effects of this level then serve as the pre-
conditions for the next level 1l and so on. 

3 Solutions to the core problems
We present the solutions to the two core problems posed 
in Section 2 in the form of a theorem, whose proof is in 
the Appendix. 

Theorem 1

a. Given n
1x , given 1

my , and given a set of actions 
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If more than one action satisfy the maximum in (1), 
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Aj*(
n
1x ) in (3) is the award assigned to action aj*; it 

is also the worth assigned to the precondition vector 
value n

1x by the action aj*. 

If more than one action attain the maximum award 
Aj*(

n
1x ) in (3), one of them is selected randomly. 
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4 Solutions of the network
propagation problem

In this section, we generalize the core problem solutions 
expressed in Theorem 1, Section 3, to the sequence of 
actions depicted by the ATIN in Fig. 1. 

Problem 1 (The Optimal Path Problem)

In the ATIN in Fig. 1, we fix the preconditions vector 
value (1)x n

1 , at time 1, and the effects’ vector val-

ue (N)y 1
m , at time N. We then search for the sequence of 

actions that maximizes the probability (1))x|(N)P(y n
1

m
1

. 

The solution to this problem follows a dynamic pro-
gramming approach where   

N2;1)-(y )(x 1
mn

1  lll , in our notation.  The proof 

of the step evolution is included in the Appendix.

Step 1

For each (2)x(1)y n
11

m  value, find 

 (1))(xp(1))(yqmax(1)),(yqmax   (1))r(y n
1j

m
1jj

m
10

m
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

and the action index j*( (1)y 1
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1
.

Step l 

The values (l)) x|1)-((yPmax   1))-(r(y  n
1

m
1

m
1

ll


 , for 

each 1)-(ym
1

l value, are in memory, as well as the ac-

tions that attain them. At step l, the values 

1))-(r(ymax   ))(r(y m
1

1)-(y

m
1 m

1




ll
l

    1))((yp))((yqmax)),((yqmax m
1j

m
1jj

m
10

 lll

are maintained, as well as the sequence of actions leading 
to them. 

The complexity of this problem is polynomial with 
respect to the number of links. Assume that a given 
ATIN model has ‘N’ number of levels and each level has 
‘k’ links, then the complexity is given as O (N x k).

Problem 2 (The Average Utility Maximization)

In the ATIN in Fig. 1, we fix the value of the precondi-

tion vector at time 1, denoted (1)xn
1 . For each value 

(N)y 
1
w of the effects vector at time N, we assign worth 

functions (N))(yU w
1 . For each action aj (l), at time l, we 

assign a deployment cost cj (l). The utility of the effects’ 

vector value (N)y 
1
w , when action aj (N) is taken, is then 

equal to (N)c-(N))(yU(N))(yU j
w
1

w
1j


 , while the 

utility of the same value, when no action is taken, 

equals (N))(yU(N))(yU w
1

w
10


 . We are seeking the 

sequence of actions which lead to the maximization of 

the average utility. The evolving algorithm, from part (b) 

of Theorem 1, back propagates as follows.  The proof is 

in the Appendix.

Step 1

Compute the action awards (including that to no action), 
with notation of Figure 1, as follows: 0 ≤ j ≤ r; 

1))(N(xA 1j
l

pj ( 1)(Nx1 l ) 
(N)yw

1

qj ( (N)y 
1
w )  Uj ( (N)y 

1
w )
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 1
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
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l ; 

for each )1N(x1 l value.

Take action (N)a
1))(N(x*j 1 l for preconditions vector value 

)1N(x1 l and simultaneously assign worth 

1))(N(xA 11))(N(x*j 1



l

l to 1)(N x1 l . That is, assign: 

1))(N(xA1))(NU(x 11))(N(x*j1
1




ll
l

                         (5)

Step 2

Back propagate to the preconditions at N-2, as in Step 1, 
starting with the worth assignments in (5), and subse-
quent utilizations 

1),0](Nc1))(N(xmax[A1))(N(xU j11))(N(x*j1j
1




ll
l

Step n

As in Steps 1 and 2 (for subsequent levels) the above 
described algorithm generates the optimal sequence of 
actions for given initial preconditions (1)x n

1 . The optim-
al such preconditions can be also found via maximization 
of the utility Uj ( (2)xk

1 ), with respect to (1)x n
1 .

The complexity of this problem is also polynomial 
with respect to the number of links. 

Problems 3a, 3b (Optimization with Constrained Actions)

Problems 3a and 3b impose dependency constraints on 
the actions in the ATIN network.  As explained in Sec-
tion 2, an ADM defines the dependency of one action on 
every other one, where positive dependency is depicted 
by 1 and negative dependency is depicted by 0.  The de-
pendency constraints are taken into account, when, at a 
certain level, an optimal action is finalized.  At any given 
level, only positively related actions are considered in the 
calculations.

As described in Step 1 of Problem 1 (see Section 4), 
for the first level, (1))r(ym

1
is calculated the same way 

for constrained actions also. But for the rest of the levels, 
it is calculated in a different manner. 
Consider, 

1))-(r(ymax   ))(r(y m
1

1)-(y

m
1 m
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The parameter 1))-(r(ymax m
1

1)-(y
m

1

l
l

corresponds to an ac-



OPTIMIZATION OF ACTIONS IN ACTIVATION TIMED... Informatica 33 (2009) 285–296 289

tion selected for execution in level 1-l . Its dependent 
actions can be known from the ADM. In this way, those 
combinations of actions which are not allowed by the 
ADM are eliminated from the calculation of ))(r(ym

1
l , 

hence eliminating all links to and from the actions exhi-
biting negative dependencies. As a result of which it 
yields a network with lesser number of links and eases
the determination of optimal sequence of actions.  

5 Numerical evaluations
In this section, we focus on numerical scenarios.  We first 
state the experimental setup.  We then, evaluate and dis-
cuss a specific experimental scenario.  We only state the 
experimental setups for Problems 1 and 2, since those of 
Problems 3a and 3b are straight forward modifications of 
the former.

5.1   Experimental Setups

Experimental Setup for Problem 1

Assign the probabilities
))}((x{pand))}((x{q k

1j
k
1j ll as in problem 2. 

Given these probabilities: 

a.   Compute first: 

 (1))(xp(1))(yqmax (1)),(yqmax   (1))r(y n
1j

m
1jj

m
10

m
1



       

and the action (1))(y*j m
1

that attains (1))r(ym
1

.

b. For each N,2:  ll maintain in memory the val-

ues (l)) x|1)-((yPmax   1))-(r(y  n
1

m
1

m
1

ll


 , for each 

1)-(ym
1

l value, and the actions that attain them. Then, 

compute and maintain the values:

1))-(r(ymax   ))(r(y m
1

1)-(y

m
1 m

1




ll
l

    1))((yp))((yqmax)),((yqmax m
1j

m
1jj

m
10

 lll

Also, maintain the actions that attain the val-
ues ))(r(ym

1
l .

Experimental Setup for Problem 2

Considering the network in Fig. 1, assign:

a. Worth function (N))(yU w
1 for all (N)y w

1 values of 

the effects’ status vector, at level N. 

b. Probabilities 


))((x q 1
k

j l

P( )(x 1
k l occurring | action j at step l - 1) at all 

levels, 2 to N,

where


))((x q 1
k

0 l

P( )(x 1
k l occurring | no action j at step l -1) at all 

levels, 2 to N, 

c. Probabilities pj( )(x 1
k l ) 


P(action j succeeds | )(x 1

k l preconditions) at all 

levels, from 1 to N-1, 

where p0 ( )(x 1
k l ) 



 1;  l

d. Implementation/deployment costs cj (l) for all ac-
tions, at all levels 2 to N.

Given the above assignments, 

a. Compute first,


1))(N(xA 1j
l

pj ( 1)(Nx1 l ) 
(N)yw

1

qj( (N)y 
1
w )  Uj( (N)y 

1
w )

where, 

11))(N(xp 10



l ;

Uj ( (N)y w
1 ) = max [U ( (N)y w

1 ) - cj(N), 0]

1))(N(xAmax1))(N(xA 1j
rj0

11))(N(x*j 1







ll

l
; 

for all 1)(Nx1 l values.

b. Take action 
1))(N(x*j 1

a
l for each precondition vec-

tor value 1)(Nx1 l . 

Assign worth 1))(N(xA 11))(N(x*j 1



l

l to 1)(Nx1 l , as 

1))(N(xA1))(NU(x 11))(N(x*j1
1




ll
l

Repeat steps (a) and (b) for level N-1 and back prop-
agate to level N-2. Continue back propagation to level 1.

5.2   A Specific Experimental Scenario
In this section, we illustrate the use of Activation Timed 
Influence Nets with the help of an example ATIN, and 
present the results of the algorithms included in this pa-
per, when applied to this ATIN. The model used in this 
section was derived from a Timed Influence Net pre-
sented in Wagenhals et al., in 2001 [27] (which was de-
veloped with the help of a team of subject matter experts) 
to address the internal political instabilities in Indonesia 
in the context of East Timor. For purposes of results illu-
stration, we have selected a part of this network, as
shown in Fig. 4. 

Example ATIN:

The model provides detailed information about the 
religious, ethnic, governmental and non-governmental 
organizations of Indonesia. In this section, the proposi-
tions and actions referred are given in italic text. Accord-
ing to the model, rebel militia formed by a minority 
group poses the main concern which has captured a large 
number of people under its secured territory. Amongst 
these people in the community, some are against the re-
bels and considered to be at risk, in case the negotiations 
with the local government didn’t work. For this example, 
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consider the initial conditions when the rebels are getting 
local support, the community is in unrest and the local 
administration is losing control. Based on the data pro-
vided, only one action can be executed from a possible 
set of actions at a given time i.e. either of the Indonesian 
press or provincial authority or the minister of interior 
would declare resolve to keep peace. Depending upon 
this selected action and the data provided for the effects, 
only a specific set of events can result. For instance, re-
bels may or may not start thinking that they are getting 
publicity, GOI (original anti-government of Indonesia) 
war may or may not expand, GOI chances of intervention 
and international attention may increase or decrease. 
Similarly, this specific set of events forms the set of pos-
sible pre-conditions for a later time. Depending upon 
which conditions actually become true, second action can 
be selected for execution from another set of actions, i.e. 
Security Council and General Assembly may or may not 
pass resolutions or UN may or may not declare resolve to 
keep peace. Depending upon this action and the data pro-
vided for the effects, coalition may or may not form, re-
bels may or may not contemplate talks, GOI support may 
increase or decrease or may not increase at all, or GOI 
may or may not allow coalition into territories. Ulti-
mately, the coalition may authorize use of force which 
might compel rebels to negotiate and the humanitarian 
assistance (HA) may start preparing for the worst case.
Depending upon which conditions meet, the coalition 
may declare resolve to keep peace or may declare war on 
rebels. This may affect the chances of military confronta-
tion, rebels’ popularity and chances of negotiated settle-
ment which represents the final effects in the network.

Table 1 lists some of the parameters (and their val-
ues) required by the network in Fig. 4. The parameters in 
the table are listed by their abbreviated labels also in ad-
dition to the phrases shown inside the network nodes in 
the figure. For the sake of brevity, we do not list all the 
values.

Solutions to Problems: 

Solution to Problem 1 (Optimal Path Problem):
Consider the example scenario described earlier, we need 

to identify an optimal path (i.e., the sequence of actions) 
resulting into the final effect when, military confrontation 
chances are reduced, while rebels start losing local sup-
port and negotiation chances start increasing. This set of 
effects (post-conditions) leads to the following output 
state in the ATIN model:
- Reduction in the chances of military confrontation

(i.e. Y12 = 0)
- Decrease in local support and popularity for Rebels

(i.e. Y13 = 1)
- Increase in chances of negotiated settlement         

(i.e. Y14 = 1).
The above defined conditions lead to a post-

condition vector [0, 1, 1] T at level 4, i.e. (4)y14
12 .

After fixing the post-condition vector, we define the 
initial preconditions, when rebels have been getting local 
support, the community has been in unrest and the local 
administration has started losing control. This set of pre    
conditions given by (1)x 3

1 results into a vector value of 
[1, 1, 1] T, where
- X1 = 1; represents the condition Rebels are getting 

Local Support
- X2 = 1; represents the condition There is unrest in 

the Community
- X3 = 1; represents the condition Local Administra-

tion is losing Local Control.
We want to find out the sequence of actions which 

achieves the desired effects 4)(y14
12 given the initial pre-

conditions (1)x3
1 . Technically, we want to identify the 

sequence of actions which maximizes the probabil-

ity (1))x|(4)P(y 3
1

14
12 . Applying the optimal path algo-

rithm (see Section 4) results that if the provincial author-
ity and UN declare resolve to keep peace and coalition 
does not take any action, instead it declares resolve to 
keep peace, then the desired effects will be achieved 
which will result into less chances of military confronta-
tion, reduction in local support for rebels and more 
chances of a negotiated settlement. 

Figure 4: Example ATIN.
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The details of this result are given in Table 1.  It only 
contains the values that correspond to the selected ac-
tions at their respective levels, while a complete set of 
probabilities has been used to calculate the actual final 
sequence. The optimal actions, their corresponding state 
vectors and the probabilities are underlined in the table. 
The Optimal Path algorithm is of dynamic programming 
nature, so it requires two traversals to finalize the se-
quence of actions. During the forward traversal, )r(ym

1 is 

calculated for each level for all possible post-condition 
combinations. At the last level, the post-condition vector 

(4)y14
12

is fixed to be the desired effect of the network 

which is [0, 1, 1] T as determined earlier. The best action 
associated with this post-condition vector is identified 

along with its pre-condition vector )4(x 14
12 . Using this 

pre-condition vector (which is the post-condition vector 
of the second last level), the network is traversed in re-
verse direction identifying actions and their correspond-
ing preconditions, from last to the first level. The action 
at the first level is identified by fixing the pre-condition 
to the value determined earlier, i.e. (1)x 3

1 which is       

[1, 1, 1] T. Completing both forward and reverse travers-
als gives the optimal actions which achieve the desired 
effects when the initial causes are given.

Solution to Problem 2 (Average Utility Maximization):
Consider a scenario where we need to identify the se-
quence of actions which maximizes the effects’ average 
utility (at level 4) for the same input pre-condition as it 
was used in the solution of Problem 1, i.e. [1, 1, 1] T. 
Assume, that the deployment costs for actions a8 and a9

are 25 and 30 units, respectively. The worth of each ef-
fect in the last level (i.e. level 4) is given by the worth 
function values (4))(yU

14

12
given in Table 2 and 3. Each 

effect also has a net utility which is determined by sub-
tracting the deployment cost of the action from the worth 

of the effect. This net utility (4))(yU
14

12j (when action aj is 

taken) and the action awards are given in Tables 2 and 3. 
The action award is calculated for each action corre-
sponding to all of its pre-conditions. Similarly, these cal-
culations are performed for the rest of the actions in 
ATIN model (after costs are assigned to every action in 
the model), but for the sake of brevity only the results for 
actions a8 and a9 are shown in Tables 2 and 3, respec-
tively.

As described in Section 4, the action award is calcu-
lated for all actions in each level. For instance, starting 
from the last level, the action awards are calculated for 
actions a8 and a9. The selected action is the one which 
maximizes the average utility and its action index ‘j’ is 
recorded. As each action award is calculated, it is also 
assigned as the worth function to the previous level ef-
fects vector. The latter worth function is used to calculate 
the utilities at the previous level, and calculations are 
repeated similarly. This procedure is back traversed from 
last to first levels. Table 4 summarizes the action awards 
of those actions which maximize the effects’ average 
utility at their respective levels.

Table 2: Utility Functions and Action awards for Ac-
tion a8

[0,0,0]T 16.00% [0,0,0]T 37.00% 40 15 11.11

[0,0,1] T 24.00% [0,0,1]T 65.00% 30 5 16.66

[0,1,0] T 75.00% [0,1,0]T 53.00% 60 35 52.07

[0,1,1] T 85.00% [0,1,1]T 21.00% 79 54 59.02

[1,0,0] T 91.00% [1,0,0]T 19.00% 41 16 11.11

[1,0,1] T 72.00% [1,0,1]T 43.00% 65 40 49.99

[1,1,0] T 16.00% [1,1,0]T 29.00% 37 12 63.18

[1,1,1] T
38.00% [1,1,1]T

27.00% 51 26 26.38

Level 4 – Action a8

(4)X
14

12
))4((xp 14

128 (4)Y
14

12 (4))(yU 14
128

(4))(xA 14
128))4((yq 14

128
(4))U(y14

12

Table 3: Utility Functions and Action awards for Action 
a9.

[0,0,0] T 67.00% [0,0,0]T 41.00% 40 10 48.25

[0,0,1] T 97.15% [0,0,1]T 26.00% 30 0 69.96

[0,1,0] T 58.29% [0,1,0]T 71.00% 60 30 41.97

[0,1,1] T 13.00% [0,1,1]T 17.00% 79 49 9.36

[1,0,0] T 18.48% [1,0,0]T 26.00% 41 11 13.31

[1,0,1] T 39.28% [1,0,1]T 54.00% 65 35 28.29

[1,1,0] T 38.67% [1,1,0]T 62.00% 37 7 27.85

[1,1,1] T
30.88% [1,1,1]T

58.00% 51 21 22.24

Level 4 – Action a9

(4)X
14

12
))4((xp 14

129 (4)Y
14

12 ))4((yq 14
129

(4))U(y14
12 (4))(yU 14

129 (4))(xA 14
129

From Table 4 it can be seen that the sequence of ac-
tions that maximizes the effects’ average utility, obtained 
as a result of applying the algorithm is given by: a1 (i.e. 
Indonesian press declares resolve to keep peace), a6 (i.e. 
Resolution is passed in General Assembly), a7 (i.e. Coali-
tion authorizes use of Force), a9 (i.e., Coalition declares 
war on rebels). The underlined entries in Table 3 corres-
pond to the worth, utility function and action award of 
action a9.

Solution to Problem 3a, 3b (Constrained Actions):
The dependencies among the actions in the example 

ATIN model are defined in the action dependency matrix
given in Figure 5.

Most of the dependencies given in the matrix are 
quite evident. For instance, the peace resolution declara-
tion by UN (a5) ensures that either of Indonesian press, 
provincial authority or minister of interior must also 
have declared the resolution to keep peace (either of a1 

or a2 or a3 must have been executed in the past) which 
would represent the opinion of the locals in general. Si-
milarly, resolution passed by the Security Council or 
General Assembly (a4 or a6) makes sure that whether or 
not the coalition will have to authorize the use of force
(a7), considering the resolution is in support of use of 
force. This infers that if the coalition authorizes the use 
of force, it will declare war on Rebels otherwise, it will 
declare resolve to keep peace. All of these dependencies 
can be observed from the ADM (as shown in Fig. 5).

Consider a25 in ADM, (as shown in Fig. 5) which 
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corresponds to a positive dependency between peace 
declaration by the provincial authority (a2) and peace 
declaration by UN (a5). The ADM suggests that there 
exist negative dependencies between action a2 and ac-
tions a4, a6, a7 and a9 which means that if Provincial au-
thority declares peace resolution, Security Council and 
General Assembly won’t pass resolution and the Coali-
tion will not authorize the use of force and hence will 
declare resolve to keep peace. This knowledge of depen-
dencies from the ADM certainly reduces an extensive 
amount of effort in calculating the optimal path. While
calculating the optimal path, during the forward traversal, 
only those paths are considered which satisfy the con-
straints defined in ADM yielding less number of combi-
nations to consider for calculation and making it easy to 
back traverse and identify the optimal actions. 

The same applies to the solution of the second prob-
lem of identifying sequence of actions maximizing the 
effects’ average utility under constraints. The action 
awards are calculated for those actions only which satisfy 
constraints defined in ADM, and hence reducing the ef-
fort of calculating action awards and assignment of worth 
function at each level.

Table 4: Action Awards.

6 Conclusion
This paper presented an extension of a Timed Influence 
Net, termed ATIN (Activation Timed Influence Net).  An 
ATIN utilizes a set of preconditions required for the un-
dertaking of an action and produces a set of effects. 
These effects become then the preconditions for the next 
level of action(s), resulting in a sequential evolution of 
actions. Some other probabilistic planning techniques 
were also discussed. The paper identified several pre-

selected performance criteria regarding ATINs (i.e., op-
timal path and average utility maximization with and 
without constrained actions) and recommended algo-
rithms for their satisfaction. A tool called ADM (Action 
Dependency Matrix) was introduced, which induces de-
pendencies among the actions. It is represented with the 
help of a mm matrix, where ‘ m ’ represents the total 
number of actions in the network. 

The implementation of the suggested algorithms was 
illustrated with the help of a real world example. The 
example demonstrated a politically unstable situation in 
Indonesia. Sets of actions preceded by preconditions and 
followed by sets of effects were demonstrated in the form 
of an ATIN Model (see Figure 4). The experiment was 
formulated based on a previous Timed Influence Net-
work model for the same scenario. The experimental 
procedure was applied to the network with a set of prob-
ability data. Solutions of both problems were discussed 
in depth. The optimal path problem required the know-
ledge of an initial set of causes (preconditions) and the 
final set of effects (postconditions). With the help of the 
algorithm, an optimal sequence of actions was identified 
which maximized the conditional probability of achiev-
ing the desired effects, when the initial conditions were 
given. For the sake of brevity, only significant parts of 
the probability data used were shown in Table 1. For the 
same scenario, the second algorithm yielded a sequence 
of actions, which maximized the effects’ average utility. 
The solution for both problems was comprehended in 
detail. The experiment was repeated with constrained 
actions considering only dependent actions as defined in 
the Action Dependency Matrix (see Figure 5) which pro-
duced similar results and required lesser effort to calcu-
late than without ADM.
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Appendix
Proof of Theorem 1

In the derivations below, the following considerations are 

incorporated: 

1. Effects are fully dictated by the actions taken; thus, 

when probabilities are conditioned on actions and 

preconditions, the conditioning on preconditions 

drops.

2. By probability of action success, we mean the prob-

ability that the action may succeed, given the pre-

conditions.  The final action is selected among those 

that have positive probability of success.  The prob-

ability of action taken, given that the action may 

succeed is the criterion that dictates the final action 

selection.
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Proof of the Network Propagation – Problem 1

Using the notation in Section 4, Problem 1, and via the 
Theorem of Total Probability and the Bayes Rule, we 
obtain:
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where, via Theorem 1 we have:
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1  is selected. The above proves the general 

step in the network propagation of Problem 1.

Proof of the Network Propagation – Problem 2

Using the notation in Section 4, Problem 2, and via the 
use of the Theorem of Total Probability and the Bayes 
Rule, we obtain:
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The latter expression proves the back propagation prop-
erty and the steps in the algorithm.


