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A novel steganographic scheme based on data decomposition and stego-coding mechanisms is 
proposed. In this scheme, a secret message is represented as a sequence of digits in a notational system 
with a prime base. Each digit block is decomposed into a number of shares. By using stego-coding 
technique, these shares are then embedded in different cover images respectively. In each cover, a share 
is carried by a group of cover pixels and, at most, only one pixel in the group is increased or decreased 
by a small magnitude. That implies a high embedding efficiency, and therefore distortion introduced to 
the covers is low, leading to enhanced imperceptibility of the secret message. A further advantage of the 
scheme is that, even a part of stego-images are lost during transmission, the receiver can still extract 
embedded messages from the surviving covers.

Povzetek: Predstavljena je nova steganografska metoda.

1 Introduction
Steganography is a branch of information hiding that 
aims to send secret messages under the cover of a carrier 
signal. While many steganographic methods have been 
proposed for various types of cover media in recent 
years, techniques of steganalysis have also rapidly 
developed to detect the presence of secret messages 
based on statistical abnormality caused by data hiding [1, 
2]. Generally speaking, the more the embedded data, the 
more vulnerable the system will be to the steganalytic 
attempts. When a multimedia product is under suspicion, 
the channel warden may refuse to transmit it, and the 
source of the message can be tracked. As a 
countermeasure, the data-hider always tries to improve 
statistical imperceptibility of the hidden message.

An important technique to improve imperceptibility 
is to reduce the amount of alterations to be introduced 
into the cover for hiding the same quantity of data, in 
other words, to improve embedding efficiency. For 
example, Matrix encoding uses less than one change of 
the least significant bit (LSB) in average to embed l bits 
into 2l1 pixels [3]. In this way, distortion is significantly 
lowered compared to a plain LSB technique in which 
secret bits simply replace the LSB. Further, some 
effective encoding methods derived from the cyclic 
coding have been described [4], and the matrix encoding 
can be viewed as a special case. In [5], two methods 
based on random linear codes and simplex codes are 
developed for large payloads. Another method, termed 
running coding, can also be performed on a data stream 
derived from the host in a dynamically running manner 
[6].  All the above-mentioned stego-coding techniques 
are independent of any particular cover-bit-modification 

approaches. For example, if a stego-coding method is 
used in the LSB plane of an image, adding 1 to a pixel is 
equivalent to subtracting 1 from the pixel to flip its LSB 
for carrying the secret message. In addition, we [7] and 
Fridrich et al. [8] independently presented a same method 
with better performance, termed respectively exploiting 
modification direction (EMD) and grid coloring (GC for 
short). Using this method, log2(2q+1) secret bits are 
embedded into q cover pixels and, at most, only one 
pixel is increased or decreased by 1. In [8], a data-hiding 
approach incorporating GC with Hamming-derived 
steganographic encoding technique is also studied, which 
in fact is a special case of GC. We also applied the wet 
paper codes to steganography to further increase 
embedding efficiency [9, 10 11].

Since stego-covers may be lost due to an active 
warden or poor channel conditions, a steganographic 
system capable of resisting interference is also desired to 
the data-hider. This paper proposes a novel 
steganographic scheme by introducing a data 
decomposition mechanism together with stego-coding 
techniques, such as running coding and EMD embedding 
methods. In this way, the secret message is inserted into 
a number of cover images with high embedding 
efficiency. Even a part of stego-images are missing, one 
can still extract the hidden message from the remaining 
covers.

The rest of this paper is organized as follows. 
Section 2 introduces the related stego-coding methods.
The proposed scheme is described in Section 3 and 4. 
Then, the experimental results are shown in Section 5. 
Finally, we conclude in Section 6.
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2 Related Stego-coding methods
In stego-coding methods, a number of patterns of cover 
data are used to represent a type of secret data, and the 
data-hider modifies the original cover data to the nearest 
pattern mapping the secret data to be hidden. This way, 
by changing a small part of cover data, a fairly large 
amount of secret data can be embedded. In this section, 
we briefly review the related techniques including
running coding and EMD embedding methods.

2.1 Running coding
With running coding method [6], each secret bit is 
represented by a series of consecutive cover bits, and 
each available cover bit also relates to several 
consecutive secret bits. In other words, the secret 
message is embedded as a data stream, and each cover-
bit-alteration is used to embed several consecutive secret 
bits.

Assume that the secret message to be hidden 
contains K bits: [x1, x2, , xK], and the available LSB for 
carrying the secret message are [b1,1, b1,2, , b1,T; b2,1, 
b2,2, , b2,T; ; bK,1, bK,2, , bK,T], where T is an integer 
power of 2 (T = 2t). A binary generating matrix G sized 
(t+1)  T is first constructed. Denote the elements in G as 
g(i, j), where 1  i  t+1 and 1  j  T. Assign all the 
elements in the first row as ‘1’ and make all the 2t

columns in G mutually different. For example, the 
generating matrix of the 4th running coding is
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According to the original host data and the generating 
matrix G, calculate
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where bvi+1,j = 0 if vi+1  0. The data-hider can 
use a small number of alterations in these host bits to 
make the values of yvs equal to the secret bits xvs. Let
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Orderly arrange all zvs to form a vector Z = [z1, z2, , 
zK]T, and divide Z into a set of sub-vectors in the 
following way:

1. Scan the vector Z from the beginning to the 
end;

2. If the encountered bit is ‘0’, define this ‘0’ as a 
sub-vector containing only one element;

3. If the bit is ‘1’, define this ‘1’ together with the 
following t bits as a sub-vector with a length 
(t+1). Obviously, the sub-vector in this case 
must be identical to one of the columns in G.

That means Z is segmented into a sequence of sub-
vectors, each being either a column of the generating 
matrix G or a single zero. According to (2), flipping the 
value of host bit bv,j will change the value of yv+i1 if g(i, 
j) = 1 (1  i  t+1, 1  j  T). Thus, we can modify only 
one host bit to change the values of several yvs. Assume
that a sub-vector [zv, zv+1, , zv+t]

T is same as the j-th 
column of G. By flipping the value of host bit bv,j, the 
data-hider may make [y'v, y'v+1, , y'v+t] identical to [xv, 
xv+1, , xv+t], where [y'v, y'v+1, , y'v+t] are obtained from 
the modified host bits according to (2). This way, the 
secret data can be embedding using a small number of 
bit-alterations.

2.2 EMD embedding
EMD embedding [7] is an alternative method for 
inserting secret data into a certain cover image with a 
high embedding efficiency. Using this method, each 
symbol in notational system with an odd base will be
carried by a group of pixels, and, at most, only one pixel 
is increased or decreased by 1. 

Denote a secret symbol in notational system with an 
odd base (2q+1) as s, and the gray values of pixels in a 
group as g1, g2, , gq. Calculate the extraction function f
as a weighted sum modulus (2q+1) 
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Consider the vector [g1, g2, , gq] as a hyper-cube in q-
dimensional space. The extraction function must have the 
following two properties: 1) values of the extraction 
function on all hyper-cubes fall in the interval [0 2q], and 
2) the values of f on any hyper-cube and its 2q neighbors 
are mutually different. This implies that a symbol in the
(2q+1)-ary notational system can be carried by a pixel-
group, and, at most, only one pixel will be increased or 
decreased by 1. If the symbol s equals the extraction 
function of the original corresponding pixel-group, no
modification is needed. When s  f, calculate u = s  f
mod p. If u is no more than q, increase the value of gu by 
1, otherwise, decrease the value of gpu by 1. 

For example, considering an original pixel-group 
[137 139 141 140] with q = 4, f = 3 and a corresponding 
symbol 4 in 9-ary notational system, a data-hider can 
calculate u = 1, so he can increase the gray value of the 
first pixel by 1 to produce the stego-pixels [138 139 141 
140]. If the symbol to be hidden is 0, u = 8 can be 
calculated and the gray value of the forth pixel will be 
decrease by 1 to yield [137 139 141 139]. 

3 Data embedding procedure
In this proposed scheme, a secret message is firstly 
represented as a series of shares according to a data 
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decomposition mechanism and various indices, and the 
shares corresponding to different indices are respectively 
inserted into different cover images. Then, a generalized
running coding or EMD method is employed to keep 
stego-induced distortion at a low level, and redundancy 
in the shares ensures that one can recover the original 
secret message from a part of stego-covers.

3.1 Data decomposition
At the beginning, a data-hider converts a secret message 
into a digit sequence in a notational system with an odd 
and prime base p, such as 3, 5, 7, 11, etc. If the secret 
message is a binary stream, it can be segmented into 
many pieces, each having L1 bits, and the decimal value 
of each secret piece is represented by L2 digits in a p-ary 
notational system, where

 pLL 221 log  

For example, the binary message (1001 1101 0110) can 
be rewritten as (14 23 11) in 5-ary notational system 
when L1 = 4 and L2 = 2. Thus, the rate of redundancy in 
the digit sequence
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With large L1 and L2, RR is very close to 0, therefore can 
be ignored. So, the secret message is regarded as a digit 
sequence in p-ary notational system in the following 
discussion.

Then, the data-hider segments the secret digit 
sequence into a series of blocks, each of which contains 
m digits. Denote the number of blocks as K, and the
block as {dk,1, dk,2, , dk,m} (k = 1, 2, , K). Inspired by 
[12], decompose each secret block into n shares, {sk,1, 
sk,2, , sk,n}, in the following way,
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where m  n  p,
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and the symbol “” in (7) is a multiplication operator with 
a modulus p. We call a1, a2, , and an as indices. All 
indices lie between [0 p1] and are mutually different. 
For example, assuming p = 5, n = 4, m = 3, and
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a digit block {2, 4, 1} can be represented as 4 shares: 4, 
4, 2, and 2. Note that the shares are also within the p-ary 
notational system.

Collect all shares and divide them into n sets {s1,1, 
s2,1, , sK,1}, {s1,2, s2,2, , sK,2}, , {s1,n, s2,n, , sK,n}, 
each of which contains K shares. Then, the n share-sets 
and their corresponding indices will be embedded into n
cover images, respectively. Since the indices are within 
[0 p1], they can also be regarded as symbols in the p-
ary notational system. In other words, each cover image 
will be used to conceal (K+1) symbols in the p-ary 
notational system, s1,t, s2,t, , sK,t and at (t = 1, 2, , n).

3.2 Generalized running coding 
In order to improve steganographic imperceptibility, we
use stego-coding technique to lower the distortion caused 
by data embedding. As mentioned above, running coding
in [6] is only suitable for binary data-hiding system. This 
subsection generalizes the running coding method, so 
that the secret symbols in the p-ary notational system can 
be carried by a sequence of gray-pixel-value of cover 
image. Actually, for each cover image, either generalized 
running coding or EMD embedding can be employed to 
embed the shares and index.

In the generalized running coding method, each 
secret symbol in the p-ary notational system is
represented by a series of consecutive cover values, and 
each cover value also relates to several consecutive 
secret symbols. Thus, a data-hider can modify a selected
cover value to embed several secret symbols, so that the 
distortion introduced into the cover signal is significantly 
reduced, which also means the data-hiding efficiency is 
increased.

For convenience, we denote the (K+1) symbols in 
the p-ary notational system to be embedded into a certain 
cover as [x1, x2, , xK+1]. Pseudo-randomly select 
(K+1)T pixels in cover image according to a secret key, 
and denote the gray-levels of them as [h1,1, h1,2, , h1,k+1;
h2,1, h2,2, , h2,k+1; ; hT,1, hT,2, , hT,k+1]. That means 
the number of host values is T times of that of secret 
symbols. 

3.2.1 The case of T = pt

Firstly, we discuss the case that T is an integer 
power of p (T = pt). Inspired from [6], construct a
generating matrix G sized (t+1)  T. Denote the elements 
in G as g(i, j), and assign them according to the 
following principle,

1. All elements are integers within [0, p1].
2. All elements in the first row are 1.
3. All pt columns in G are different.

For example, when p=3 and k=9,
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From the original host data and the generating 
matrix G, calculate
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where hvi+1,j = 0 if vi+1  0. That means the value of yv

is determined by (t+1)  T host values hvt,1, hvt,2, , 
hvt,T, hvt+1,1, hvt+1,2, , hvt+1,T, , hv,1, hv,2, , hv,T. 
Similarly, we will modify a small number of host values 
to make each yv equal to the corresponding secret xv. Let

1,,2,1,mod  Kvpyxz vvv   

Arrange all the zv to form a vector Z = [z1, z2,  , zK+1]
T, 

and then divide Z into a set of sub-vectors in the 
following way:

1. Scan the vector Z from the beginning to the end;
2. If the encountered digit is ‘0’, define this ‘0’ as a 

sub-vector containing only one element;
3. If the encountered digit zv is not ‘0’, define this 

digit together with the following t digits as a sub-vector 
with a length (t+1). Because all the elements in the first 
row of G are 1 and p is prime, the sub-vector in this case 
must be equal to product of zv and one of the columns in 
G with modulus p.

Equation (11) indicates that any change on host
value hv,j will affect the values of yv, yv+1, , yv+t. Thus,
we can modify only one host value but embed several 
secret symbols. Assume that zv is not 0 and the sub-
vector [zv, zv+1, , zv+t]

T equals the product of zv and the 
j-th column of G with modulus p. Either increasing the 
value of hv,j by zv or decreasing the value of hv,j by pzv

will make [y'v, y'v+1, , y'v+t] identical to [xv, xv+1, , 
xv+t], where [y'v, y'v+1, , y'v+t] are obtained from the 
modified host values according to (11). In this way, all 
secret symbols can be embedded by performing the 
similar operation for all sub-vectors.

Consider that, for example, a host value sequence 
with length 21 for carrying secret message is [40 187 99, 
93 231 19, 82 78 33, 11 176 134, 56 27 121, 31 249 83,
90 111 24], and 7 secret digits in ternary system, 
implying p = 3, [2110100]. Because T = 21/7 = 31, 
construct a generating matrix G.
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From (11), the vector Y is [2200021], so that Z = 
[0210112]T. Append ‘0’ to the end of Z and segment it 

into 5 sub-vectors: [0], [21]T, [0], [11]T, and [20]T. Note 
that appending ‘1’ or ‘2’ is also allowable. Since the sub-
vector [21]T is a product of 2 and the 3rd column of G
with modulus 3, the data-hider should increase h2,3 by 2 
or decrease h2,3 by 1. To lower the distortion, the value of 
h2,3 is decreased by 1. Similarly, h5,2 should be increased 
by 1, and h7,1 decreased by 1. So, the stego-sequence [40 
187 99, 93 231 18, 82 78 33, 11 176 134, 56 28 121, 31 
249 83, 89 111 24] are produced. In this way, 7 symbols
in ternary system are embedded by adding/subtracting 1 
to/from three pixels. On the receiving side, a simple 
calculation of (11) can recover the embedded data, when 
the receiver knows the values of p, T and G.

A ratio between the number of embedded bits and 
the distortion energy caused by data hiding, E, is used to 
indicate the embedding efficiency. As mentioned above, 
a sub-vector must be ‘0’, or contains (t+1) elements and 
begins with a non-zero digit. Since the values of z are
also uniformly distributed within [0, p1], the probability 
of the former case is 1/p, while that of the later case is 
(p1)/p. In the former case, the secret symbol has been 
represented and any modification is needless, while in 
the later case, a modification on one host value is made 
to embed (t+1) digits. In average, (ptt+p)/p secret 
symbols are embedded by modifying (p1)/p host values. 
As p is odd, the modifications on host values are within
[(1p)/2, (p1)/2], thus,
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which is significantly larger than 2, the embedding 
efficiency of plain LSB replacement/matching method.

3.2.2 The case of pt < T < pt+1

If T is not an integer power of p, i.e., pt < T < pt+1, a
generating matrix G sized (t+2)  T can also be 
constructed as follows:

1. All elements are integers within [0, p1].
2. All elements in the first row are 1.
3. All g(t+2, j) are 0 where 1  j  pt.
4. The columns in G are different.

For instance, when p=5 and T=8,
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Similarly, ys and zs can be computed from (11) and 
(12). Vector Z can be segmented into sub-vectors in the 
following way:

1. Scan the vector Z from the beginning to the end;
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2. If the encountered digit is 0, designate this digit
as a sub-vector and denote this type of sub-vector as SV0;

3. If the encountered digit zv is not 0, and the vector 
containing zv and the following (t+1) digits is equal to a 
product of zv and one of the columns in G with modulus 
p, designate the (t+2) digits as a sub-vector, and denote 
this type of sub-vector as SV1;

4. If the encountered digit zv is not 0, and the vector 
containing zv and the following (t+1) digits is not the 
same as the product of zv and any column in G with 
modulus p, designate zv and the following t digits as a 
sub-vector with length (t+1), and denote this type of sub-
vector as SV2. In this case, the next sub-vector must start 
with a non-zero digit.

Denoting the up-left sub-matrix of G sized (t+1)  pt

as G', an SV2 sub-vector must be equal to a product of zv

and one of the columns in G' with modulus p. For an SV0

sub-vector, no modification is needed. But for an SV1

sub-vector equal to a product of its first element zv and 
the j-th column in G with modulus p or an SV2 sub-
vector equal to a product of its first element zv and the j-
th column in G' with modulus p, the data-hider should 
increase the value of hv,j by zv or decrease it by pzv.

For example, consider 80 host values available for 
carrying secret message and 10 secret symbols in 5-ary 
notational system [2314023343]. Because T = 80/10 = 8, 
we can construct a generating matrix G as in (14). 
Assuming the vector Y = [2130204131] can be 
calculated according to (11), thus Z = [0234324212]T. 
Append a ‘0’ to the end of Z and segment it into 5 sub-
vectors [0], [23]T, [43]T, [242]T, and [120]T. Following
the rule of modification as described above, the data-
hider should increase h2,5 by 2, decrease h4,3 by 1, 
increase h6,8 by 2, and increase h9,3 by 1 so as to embed 
the secret data.

Now we calculate the embedding efficiency. As 
mentioned, a sub-vector following an SV2 must be SV1

or SV2. Therefore, any sequence of sub-vectors between
the end of an SV1 and the end of the next SV1 must be in 
the form of {0, 0, , 0, SV2, SV2, , SV2, SV1}. Denote 
the numbers of consecutive 0s and SV2 sub-vectors as l0

and l2 (l0, l2 = 0, 1, 2, ), respectively. In the above 
example, the pattern of the first 4 sub-vectors is {0, SV2, 
SV2, SV1} (l0 = 1, l2 = 2). Denoting

1/  tpT  

the probability of a sub-vector sequence with l0 ‘0’s, l2

SV2 sub-vectors, and an SV1 is
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For the sub-vector sequence, a total of [l0 + l2(t+1) + t + 
2] secret digits are embedded by modifying (l2+1) host 
values. Thus,
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3.3 Application of EMD embedding 
When using EMD embedding for concealing (K+1) p-ary 
symbols, including K shares and an index, into a cover 
image, pseudo-randomly select (K+1)q pixels according 
to a secret key, and divide them into (K+1) pixel-groups, 
each of which contains q pixels. Here,

2

1


p
q  

Then, we map the (K+1) symbols to the pixel-groups in a 
one-by-one manner. Using EMD embedding method, 
each symbol in the p-ary notational system is carried by a 
group of pixels, and, at most, only one pixel is increased 
or decreased by 1. As analysed in [7], the embedding 
efficiency is 

1

log2





p

pp
E  

which is also significantly larger than 2, the embedding 
efficiency of plain LSB replacement/matching method.

Note that both generalized running coding method 
and EMD embedding method can be used to gain a high 
embedding efficiency, and the stego-coding techniques 
used in different covers may be different. So, an 
additional bit that labels the stego-coding technique used 
in a certain cover, e.g., ‘0’ for generalized running 
coding and ‘1’ for EMD embedding, as well as the values 
of p and K, should be embedded into the cover image 
itself. If running coding is executed, the parameter T
should be also hidden in the corresponding stego-image. 
Actually, LSB replacement method can be used to embed 
the additional secret information into cover images, and 
the embedding positions may be determined by the secret 
key. 

4 Data extracting procedure
As mentioned in the previous section, the secret message 
is embedded into n cover images, and all the n stego-
images are sent through a poor channel. Assume the 
stego-images may be lost in the channel. If the number of 
received stego-images is no less than m, one can still 
recover the original secret message using m arbitrary 
stego-images.

For each received stego-image, the receiver first
extracts the embedded label-bit of stego-coding 
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technique and the values of parameter p, K and T.  If 
generalized running coding is used in the cover, the 
receiver selects (K+1)T pixels according to the same 
secret key, and calculates the K embedded shares, s1,t, s2,t, 
, sK,t, and the embedded index at (t = 1, 2, , n) using 
(11). If EMD method is used, the receiver selects (K+1)q
pixels according to the same secret key, and divides them 
into (K+1) pixel-groups. Then, he calculates the 
extraction function of stego-pixel-groups to obtain the 
(K+1) embedded symbols. This way, the receiver may 
extract a total of Km shares and m indices from m
received stego-images. Denote the extracted indices 

as
mttt aaa ,,,

21
 . For each digit block, Equation (7) 

can be reformulated as

    tmkkktktktk dddsss
m

A ,2,1,,,, 21


 

The left side is m shares extracted from different stego-
images, and At is an mm matrix made up of m columns 
of A corresponding to the extracted indices
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As well known, At is a Vandermonde matrix, and its 
determinant is

 



ji

ttt ji
aaA  

Since all at are mutually different, |At| can not be zero. 
That means At must have an inverse with the modulus p,

t

t
t A

A
A

*
1   

where *
tA is the adjoint matrix of At. So, the secret digit 

block can be restored by using m extracted shares and the 
inverse matrix of At

    1
,,,,2,1, 21
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For example, for the matrix A in Equation (9), the 
indices extracted from three stego-images are 2, 4, and 1, 
the receiver can obtain


















114

142

111

tA  

and its inverse
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If the three extracted shares are respectively 4, 4, and 2, 
the digit block is then calculated

   142224 1  
tA  

After calculating all the digit blocks, the receiver can 
concatenate them to retrieve the secret message.

5 Experiment results
In the experiment, a secret message with 3.6105 bits 
was first converted into 1.3105 digits in 7-ary notational 
system. After segmenting the secret digit sequence into a 
series of blocks with length 4, each digit block was 
decomposed into 6 shares using Equation (7). That 
means p = 7, n = 6, and m = 4. Then, the 6 share-sets and 
their corresponding indices were embedded into 6 cover 
images sized 512512. In other words, each cover image 
was used to conceal 3.2104 symbols in 7-ary notational 
system. Then, we produced 6 stego-images, three of them 
produced by using generalized running coding with T = 
8, and the rest three by using EMD method. Figure 1 
shows 4 stego-images among them. In each stego-image 
produced by generalized running coding, the number of 
changed pixels was 1.5104 with the modifications 
within [3, 3], and the value of PSNR due to data hiding 
is 53.9 dB, indicating the visual imperceptibility. In each 
stego-image produced by EMD method, there were 
2.8104 pixels increased/decreased by 1, and the value of 
PSNR is 57.8 dB. Since only a small part of cover pixels 
were increased or decreased by small magnitudes, it is 
difficult to detect the presence of secret message. 
Actually, if one receives no less than four stego-imges 
among all the six, he can always recover the secret 
message using the data extracted from the received 
stego-images.

We also attempted to conceal the same secret 
message using various steganographic methods, 
respectively. With a plain LSB embedding method, two 
cover images with a size of 512512 were required to
provide sufficient LSBs for accommodating the secret 
data. In this case, the values of PSNR of the stego-
images are 52.1 dB. When employing the original 
running coding and assigning the parameter T = 2, the 
secret message were carried by three 512512 cover 
images with PSNR 52.9 dB. Alternatively, after 
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converting the secret message into a series of 7-ary 
symbols (q = 3), we exploited EMD embedding method 
to conceal them into four cover images. Here, PSNR due 
to data-hiding is 57.8 dB. When the three methods are 
used, all stego-images are necessary for data extraction at 
receiver side. Table 1 shows the performance comparison 

between the three methods and the proposed scheme. 
Note that, although the proposed scheme exploits more 
cover images, the steganographic distortion is lower and 
the secret message can be transmitted through a severe 
channel.

  
(a) (b)

  
(c)                                                                              (d)

Figure 1: Four stego-images. While (a) and (b) are produced by running coding with PSNR 53.9 dB, (c) and 
(d) are produced by EMD embedding with PSNR 57.8 dB

Table 1. Performance comparison between various steganographic techniques

Steganographic 
technique

Number of cover 
images

PSNR due to data 
embedding

Condition for data 
extraction

LSB method 2 52.1 dB

All stego-images must 
be received

Running coding
(T = 2)

3 52.9 dB

EMD embedding
(q = 3)

4 57.8 dB

Proposed scheme
(Data decomposition & 

Stego-coding)
6

53.9 dB
and

57.8 dB

Any four stego-imges 
among all the six are 

received
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6 Conclusion
In the proposed steganographic scheme, a data 
decomposition mechanism is introduced to represent the 
secret message as a number of share sets, and both 
generalized running coding and EMD embedding 
methods can be employed to embed the shares into 
different cover images with high efficiency. This way, 
even though a part of stego-images are lost in a severe 
channel, one can still recover the hidden message from 
the received covers.

Two aspects deserve further study in the future. One 
is error correcting capability of the proposed scheme. In 
many applications, the receiver may obtain most stego-
images with channel noise. Since there is redundancy
between the share-sets embedded into different covers, 
the receiver can still restore the secret message when the 
noise is not too serious. On the other hand, since it is 
necessary to distribute the payloads into cover images 
according to their various sizes, a technique for 
decomposing the secret message into share-sets with 
different amounts is desired, i.e., a generalization of the 
data-decomposing mechanism should be developed.
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