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Now many applications of trajectory (location) data have facilitated people’s daily life. However, publish-
ing trajectory data may divulge individual sensitive information so as to influence people’s normal life. On
the other hand, if we cannot mine and share trajectory data information, trajectory data will lose its value to
serve our society. Currently, because the records of trajectory data are discrete in database, some existing
privacy protection schemes are difficult to protect trajectory data. In this paper, we propose a trajectory data
privacy protection scheme based on Laplace’s differential privacy mechanism. In the proposed scheme, the
algorithm first selects the protected points from the user’s trajectory data; secondly, the algorithm builds
the polygons according to the protected points and the adjacent and high frequent accessed points selected
from the accessed point database, then the algorithm calculates the polygon centroids; finally, the noises
are added to the polygon centroids by the Laplace’s differential privacy method, and the new polygon
centroids are used to replace the protected points, and then the algorithm constructs and issues the new
trajectory data. The experiments show that the running time of the proposed algorithms is fast, the privacy
protection of the scheme is effective and the data usability of the scheme is higher.

Povzetek: Predlagana je metoda za učinkovito varovanje podatkov o poteh na osnovi Laplacove diferenčne
privatnosti.

1 Introduction

1.1 Background

With the rapid development of computer and network, data
mining and analysis plays an increasingly important role
in our social life. The huge amounts of data (such as big
data) can bring many application services to our society,
such as trajectory (location) data, health and food data, traf-
fic safety data, etc. Trajectory data is a kind of position
information with large scale, fast changing and generally
accepted characteristics, which mainly comes from vehi-
cle networks, mobile devices, social networks and so on.
Now many applications of trajectory data have facilitated
people’s daily life, thus trajectory data service is called
as a kind of new mobile computing service. Currently, it
is the key of developing trajectory data services that we
must be able to learn and understand position information
[1]. However, trajectory data is mainly collected and dis-
seminated by mobile equipments, but many mobile devices
and mobile communication technologies must integrate ge-
ographical data and individual information into trajectory
data, such as individual information may contain individ-
ual privacy data, personal health status, social status and

behavior habits, etc, thus mining and publishing trajectory
data may divulge individual sensitive information so as to
influence people’s normal life [2,3,4].

Now it is the key of trajectory data privacy protection
that how to protect sensitive trajectory data while providing
trajectory information service on data mining. For exam-
ple, if mined data is not processed and protected on fully
open status, mined data may reveal user’s privacy so as to
affect user’s normal life. Thus, it is double-edged sword
that how to mine and use trajectory data. Namely we must
find a compromising approach between service and protec-
tion. However, many existing privacy protection schemes
cannot provide the balance of utility and protection. For
example, the generalization method [5] cannot availably
protect data, and the anonymous grouping method [6] is
not efficient enough. Furthermore, because the records of
trajectory data are discrete in database1, some existing pri-
vacy protection schemes are difficult to protect trajectory
data. Therefore, we focus on finding an efficient privacy
protection scheme for trajectory data in this paper.

1In real world, trajectory data may not be discrete. In this paper, our
focus is the combination of location data and accessed frequency, thus we
consider that the records of trajectory data are discrete.
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1.2 Our contributions
In this paper, we propose a trajectory data privacy protec-
tion scheme based on Laplace’s differential privacy mech-
anism. In the proposed scheme, the algorithm first selects
the protected points from the user’s trajectory data; sec-
ondly, the algorithm builds the polygons according to the
protected points and the adjacent and high frequent ac-
cessed points selected from the accessed point database,
then the algorithm calculates the polygon centroids; fi-
nally, the noises are added to the polygon centroids by the
Laplace’ differential privacy method, and the new poly-
gon centroids are used to replace the protected points, and
then the algorithm constructs and issues the new trajectory
data. The experiments show that the running time of the
proposed algorithms is fast, the privacy protection of the
scheme is effective and the data usability of the scheme is
higher.

1.3 Outline
The rest of this paper is organized as follows. In Section 2,
we discuss the related works about trajectory data privacy
protection. In Section 3, we review the related definitions
and theorems on which we employ. In Section 4, we pro-
pose an efficient trajectory data privacy protection scheme,
which is based on the Laplace’s differential privacy mech-
anism. In Section 5, we analyze and show the efficiency of
the proposed scheme by the experiments. Finally, we draw
our conclusions in Section 6.

2 Related work
Currently many privacy protection schemes are being
widely used in many fields, such as secure communica-
tion, social network, data mining and so on. The works
[5,6] first proposed the k-anonymity model to protect so-
cial network, whose anonymity protection methods mainly
include generalization [7,8], compression, decomposition
[9], replacement [10] and interference. Based on the works
of [5,6], many other k-anonymous protection methods [11-
21] were also proposed. However, the works [20,21,22]
proved that some anonymous protection methods cannot
protect sensitive data very well. Additionally, Cristofaro et
al. [23] proposed a privacy-encrypted protection scheme.
Although their scheme can ensure data security, data util-
ity is decreased. Current location data privacy protection
methods [1,24] are mainly classified to three categories: the
heuristic privacy-measure methods, the probability-based
privacy inference methods and the privacy information re-
trieval’s methods. The heuristic privacy-measure meth-
ods [25,26,27,28] are mainly to provide the privacy pro-
tection measure for some no-high required users, such as
k-anonymity [25], t-closing [26], m-invariability [27] and
l-diversity [28]. Also, although the information retrieval’s
privacy protection methods can achieve perfect privacy
protection, there are more or less privacy information in

the released data, so these methods may result in that no
data can be released, and these methods have high over-
head. Additionally, the probability-based privacy inference
methods can protect data and achieve better data utility un-
der certain conditions, but the effectiveness of the meth-
ods depends on original data availability. Further, the three
kinds of methods are based on a unified attack model [1],
which depends on certain background knowledge to protect
location data. However, with the increase of background
knowledge got by the attackers, these methods could not al-
ways effectively protect location data. The works [5,6,11-
19] showed the shortages of the relationship-privacy pro-
tection methods. Ting et al. [29] analyzed a variety of
privacy threat models and tried to optimize the effective-
ness of the data obtained while preventing different types
of reasoning attacks. Bugra et al. [30] proposed the first
effective location-privacy preserving mechanism (LPPM)
that enables a designer to find the optimal LPPM for a LBS
(location-based service) given user’s service quality con-
straints against an adversary implementing the optimal in-
ference algorithm. Such LPPM is the one that maximizes
the expected distortion (error) that the optimal adversary
incurs in reconstructing the actual location of a user, while
fulfilling the user’s service-quality requirement. Presently,
it is the key of protecting location data to provide a privacy
protection method not sensitively to background knowl-
edge. Based on the requirement, differential privacy pro-
tection technology can exactly satisfy it. Differential pri-
vacy is a kind of strong privacy protection method, which
is not sensitive to background knowledge. However, be-
cause location data has the characteristics of sparsity and
farrago, many differential privacy protection methods are
not enough efficient. He et al. [31] proposed a synthetic
system based on GPS path, which can provide strong dif-
ferential privacy protection mechanism. The proposed sys-
tem gets different speed trajectory by using a hierarchical
reference method to isolate the original trajectory, and then
protects the speed trajectory. Chatzikokolakis et al. [32]
proposed a predictive differentially-private mechanism for
location privacy, which can offer substantial improvements
over the independently applied noise. Their works showed
that correlations in the trace can be in fact exploited in
terms of a prediction function that tries to guess the new
location based on the previously reported locations. Ad-
ditionally, their works tested the quality of the predicted
location using a private test; in case of success the predic-
tion is reported otherwise the location is sanitized with new
noise. Chatzikokolakis et al. [33] also showed a formal no-
tion of privacy that protects the user’s exact location–“geo-
indistinguishability", and then proposed two mechanisms
to protect the privacy of user when dealing with location-
based services. Also they extended their mechanisms to the
case of location traces, and provided a method to limit the
degradation of the privacy guarantees due to the correla-
tion between the points. Li et al. [34] proposed a compres-
sive mechanism for differential privacy, which is based on
compressed sensing theory. Their mechanism is to consider
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every data as a single individual, so it undermines the rela-
tionship of data so as to be not suitable to protect location
data. Jia et al. [1] proposed a differential privacy-based
transaction data publishing scheme. Their method estab-
lishes the relationship of transaction data items by a query
tree and adds noises to the query tree based on the compres-
sive mechanism and the Laplace’s mechanism. However, it
is difficult to measure the effectiveness of their method on
privacy protection. Zhang et al. [35] proposed an accu-
rate method for mining top-k frequent data records under
differential privacy. In their scheme, the exponential mech-
anism is used to sample top-k frequent data records, and
then the Laplace’s mechanism is utilized to generate noises
to distort original data. Although the effectiveness of their
method may accurately be measured on privacy protection,
their method neglects the relationship of transaction data
items.

3 Differential privacy
Differential privacy protection can achieve privacy protec-
tion target by making data distortion, where the common
approach is to add noises into queried results. The pur-
pose of differential privacy protection is to minimize pri-
vacy leakage and to maximize data utility [36,37]. Cur-
rently differential privacy protection has two main meth-
ods [38,39]—the Laplace’s mechanism and the exponential
mechanism.

DWork et al. [39] proposed a protection method for the
sensitivity of private data, which is based on the Laplace’s
mechanism. Their method distorts the sensitive data by
adding the Laplace’s distribution noises to the original
data. Their method may be described as follows: the algo-
rithm M is the privacy protection algorithm based on the
Laplace’s mechanism, the set S is the noise output set of
the algorithm M , and the input parameters are the data set
D, the function Q, the function sensitivity ∆Q and the pri-
vacy parameter ε, where the set S approximately subjects
to the Laplace’s distribution ( ∆Q

ε ) and the mean (zero), as
shown in the formula (1):

Pr [M(Q,D) = S] ∝ exp
(

ε
∆Q · | S −Q(D) |1

)
(1)

Also, in their method, the probability density function of
added noise subjecting to the Laplace’s distribution is as
the formula (2):

Pr(x, λ) = 1
2·λ · e

−|x|
λ (2)

where λ = ∆Q
ε , namely the added noise is independent

from the data set, and is only related to the function sen-
sitivity and the privacy parameter. The main idea of their
method adds the noises subjecting to the Laplace’s distri-
bution into the output result so as to distort the sensitive
data to achieve data protection target. For example, in their
method, let Q(D) be the querying function of top-k ac-
cessing count, then the output of the algorithm M can be
represented by the following formula (3):

M(Q,D) =

Q(D) +
(
Lap1(∆Q

ε ), Lap2(∆Q
ε ), ..., Lapk(∆Q

ε )
)

(3)

where Lapi(∆Q
ε )(1 ≤ i ≤ k) is each round of the inde-

pendent noise subjecting to the Laplace’s distribution, and
the noise is proportional to ∆Q and inversely proportional
to ε.
Definition 3.1 ε−Differential Privacy: Given two adja-
cent data sets D and D′ where at most a data record is
different between D and D′ (|D 6= D′| = 1), for any
algorithm M , whose range is Range(M), if the result S
outputted by the algorithm M satisfies the following for-
mula (4) on the two adjacent data sets D and D′ (S ∈
Range(M)), then the algorithm M satisfies ε−differential
privacy.

Pr [M(D) ∈ S] ≤ eε · Pr [M(D′) ∈ S] (4)

Pr represents the randomicity of the algorithm M on D
and D′, namely denotes the risk probability of privacy dis-
closure. ε represents the privacy protection level, where if
ε is bigger, then privacy protection degree is lower; on the
contrary, if ε is smaller, then privacy protection degree is
higher.
Definition 3.2 Data Sensitivity2: Data sensitivity is di-
vided to global sensitivity and local sensitivity, we set Q
as query function, then the global sensitivity of the func-
tion Q is defined as follows:

∆Q = max
D,D′

{| Q(D)−Q(D′) |1} (5)

where D and D′ represent the adjacent data sets, Q(D)
represents the output of the function Q on the data set D,
∆Q is the sensitivity and represents the maximum of the
outputs’ difference.

Additionally, because the ε-differential privacy protec-
tion scheme may be used many times in the different stages
of processing data, the ε-differential privacy protection
scheme also needs to satisfy the following theorems:
Theorem 3.1 for the same data set, the whole privacy pro-
tection process is divided to the different privacy protec-
tion algorithms (M1,M2, ...,Mn), whose privacy protec-
tion levels are ε1, ε2,...,εn, so the privacy protection level
n∑
i=1

εi of the whole process needs to satisfy differential pri-

vacy protection.
Theorem 3.2 for the disjoint data set, the whole privacy
protection process is divided to the different privacy protec-
tion algorithms (M1,M2, ...,Mn), whose privacy protec-
tion levels are ε1, ε2,...,εn, so the privacy protection level
max{εi} of the whole process needs to satisfy differential
privacy protection.

2Differential privacy protection is to add noises to protect data, if data
sensitivity is small, then it can effectively protect data while a small quan-
tity of noises are added into original data; on the contrary, if data sensitiv-
ity is big, then a lot of noises need to be added into original data.
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4 Trajectory data privacy protection
scheme

In the section, we propose a trajectory data privacy pro-
tection scheme, which employs the Laplace’s differential
privacy method to protect the user’s trajectory data. In the
proposed scheme, the algorithm first selects the protected
points from the user’s trajectory data; secondly, the algo-
rithm builds the polygons according to the protected points
and the adjacent and high frequent accessed points selected
from the accessed point database, then the algorithm calcu-
lates the polygon centroids; finally, the noises are added to
the polygon centroids by the Laplace’s differential privacy
method, and the polygon centroids are used to replace the
protected points, and then the algorithm constructs and is-
sues the new trajectory data. The procedure of the proposed
scheme is described as follows:

(1) Input the trajectory data I , the related and historic point
data set D3, the radius r and the differential privacy
protection parameters ε and min_count4;

(2) Select the protected point setA from the trajectory data
I , then select the point data f ∈ A and its correspond-
ing adjacent points from D, where the adjacent points
belong to the range of a circle that f is the center of
the circle and r is the corresponding radius, and the
frequent accessed counts of the adjacent points are no
less than min_count, finally form the point set B;

(3) Traverse the set B, and build the corresponding poly-
gons according to the points f and its corresponding
adjacent points fromB, where only one point in every
polygon belongs to the trajectory data I , and then cal-
culate the corresponding polygon centroids, and form
the polygon centroid set J , where ji(x, y) ∈ J is the
polygon centroid (see Section 4.2 for more details);

(4) Use the Laplace’s mechanism to add the noises
Lap(k·∆Qε ) into the set J , where the noises are added
into the polygon centroids, and then generate the set
G (see Section 4.3 for more details);

(5) Use the modified polygon centroids from G to replace
the correspondingly protected points f ∈ A, and then
issue the new trajectory data I ′.

4.1 Processing trajectory data
The section describes how to select the related data from
the trajectory data I and the related and historic point data
set D. The proposed algorithm selects the protected point

3The related and historic point data include the historic location points
accessed by people and the corresponding accessed counts. To the trajec-
tory data, we may save the historic trajectory data and the related infor-
mation (including accessed time and accessed count) to the database, and
then the data may be classified to statistically form the set D.

4Our proposed scheme focuses on highly frequent accessed location
data so as to distort attacker’s target. So, the setting of min_count is to
improve the efficiency of the proposed scheme.

data f ∈ A and its adjacent points from D. Figure 1 shows
the procedure of selecting the related data. In Figure 1,

Figure 1 Processing Trajectory Data

a random trajectory of one user is shown, where the red
circles and the red arrows are used to show the trajectory,
and the green circles denote the accessed historic location
points5, which build the related and historic point data6 set
D. According to the Figure 1, the procedure of selecting
the related data may be described as follows:

– The proposed algorithm inputs the trajectory data I
of one user, the related and historic point data set D
and the related privacy protection parameters r, ε and
min_count;

– The algorithm selects the protected point set A from
the trajectory data I;

– The proposed algorithm forms the point set B accord-
ing to the point data fi ∈ A and its corresponding
adjacent points from D, where the adjacent points be-
long to the range of a circle that f is the center of the
circle and r is the corresponding radius, and the fre-
quent accessed counts of the adjacent points are no
less than min_count.

4.2 Building polygon model
The section describes how to build the polygon model to
compute the polygon centroid. The proposed algorithm
builds the polygons according to the protected points f ∈
A and the corresponding adjacent points from D. Figure 2
shows the procedure of building polygon.

In Figure 2, the trajectory of one user is f1, f2, ......f5 ∈
I , and the points h1, h2, ......h13 with accessed counts
come from D, where f2, f4 ∈ A are the protected points.

5The adjacent point data may be related to other users.
6The historic duration is within one month.
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Figure 2 Building Polygon Model

In the green circle that f2 is the center of the circle and r
is the corresponding radius, the points h1, h2 and h4 (∈ D
and their accessed counts ≥ 50) and the point f2 are used
to form a polygon. Then the proposed algorithm computes
the polygon centroid j1 (noises are added to j1 to generate a
new point g1). Similarly, the algorithm may traverse the set
B to build the polygons. We need to remark that the points
h1, h2 and h4 is nearby the point f2, thus the points may
be used to build the polygon so as to maintain the usability
of the modified trajectory, and that we set min_count is
50, thus some points whose accessed counts are less than
50 are not used to build the polygon in the green circle,
such may distort the attacker’s target and improve the effi-
ciency of the proposed scheme. The procedure of building
polygon model may be described as follows:

– The algorithm traverses the set B, and then selects
the relevant and max-sized points to build the poly-
gons according to the distance. For example, to a
potential polygon, the algorithm selects N points as
vertices from B whose coordinates are P (xi, yi) with
i = 1, 2, 3......N , where one of the N points is in the
original trajectory, and the other points are nearby the
point;

– The algorithm computes the polygon centroids ac-
cording to the vertices of the formed polygons. The
formulas is described as follows:

ji.x =
∑|Pi|
k=1 Pi.xk
n , ji.y =

∑|Pi|
k=1 Pi.yk
n .

where Pi(xk, yk) is the coordinate of the k_th vertices
of the i_th polygon, |Pi| is the vertices number of the
i_th polygon, and ji(x, y) is the coordinate of the i_th
polygon centroid.

– The polygon centroids are formed to the set J , where
ji(x, y) ∈ J .

4.3 Adding noises based on the Laplace’s
mechanism

In the section, we show how to use the Laplace’s mech-
anism to add the noises Lap(k·∆Qε )7 into the set J . The
main steps of the algorithm are described as follows:

– Input the privacy protection level ε and the polygon
centroid set J , and then generate the noiseLap(k·∆Qε )
satisfying the probability Pr(j(x, y), λ), where

Pr(j(x, y), λ) = 1
2·λ · e

−|j(x,y)|
λ .

In the above formula, the variant j(x, y) denotes the
corresponding coordinate of the polygon centroid and
λ = k·∆Q

ε .

– Add the noises Lap(k·∆Qε ) into the set J so as to dis-
turb the polygon centroids8:

ji.x = ji.x± Lap(k·∆Qε ),
ji.y = ji.y ± Lap(k·∆Qε ),

where ji ∈ J , ji(x, y) denotes the coordinate of the
i_th polygon centroid, and Lap(k·∆Qε ) is each round
of the independent noise subjecting to the probability
Pr(j(x, y), λ). Finally, the algorithm generates the set
G.

– Use the modified polygon centroids fromG to replace
the correspondingly protected points f ∈ A, and then
issue the new trajectory data I ′. For example, as the
Figure 2 shown, the noise is added to j1 to generate a
new point g1, and then g1 is used to replace the point
f2, thus the original trajectory f1 ⇒ f2 ⇒ f3 changes
to f1 ⇒ g1 ⇒ f3.

5 Experiment and efficiency analysis
of the proposed scheme

In the section, our experiments are mainly from two aspects
to evaluate the efficiency of the proposed scheme: the first
one is the running time of the proposed algorithms, namely
the time of extracting the available data; the second one
is the effectiveness of the proposed algorithms, whose in-
dexes include the trajectory deviation rate and the trajectory
accurate rate. The test original data set comes from the sim-
ulation on the Baidu map9, which is similar to the Gowalla

7∆Q is the sensitivity of the query function Q, where we set ∆Q =
max{

√
(Pi.xk − ji.x)2 + (Pi.yk − ji.y)2} with i = 1, 2, ......|NP |

and k = 1, 2, ......|Pi|, |NP | is the number of the polygons and |Pi| is
the number of the vertices of every polygon.

8If the formed polygon is on the left of the protected point from the
trajectory data I , then the operation “ + ” is used; otherwise, the formed
polygon is on the right of the protected point from the trajectory data I ,
then the operation “− ” is used.

9Baidu is a network company in China. The baidu map is one of the
network services provided by the company, which provides a lot of APIs
for programmers to develop their applications on the map.
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data set10. The test original data set contains user_id, ac-
cessed time, longitude and latitude and so on. The period
of the test original data set is about one month. All pro-
posed algorithms are coded by C++ and codeblocks11. The
related parameters for the test are set as Table 1.

Table 1: Parameter Value
Parameter Value (unit: 5 meter)

r 40,50,60,70,80,90,100,110
ε 1,2,3,4,5,6,7,8,9,10,11,12

5.1 Running time analysis

In the section, we test the running time of the proposed
algorithms mainly through the time of extracting the avail-
able data, namely we test the effectiveness of computing all
the polygon centroids from the available data. In the tests,
when we set r=70 and ε=1,2,3,4,5,6,7,8,9,10,11,12 respec-
tively, the time of extracting the available data is described
as Table 2.

From the Table 2, we may know the time of extracting
the available data is very fast, and the efficiency of comput-
ing all the polygon centroids from the available data is al-
ways increasing with the increasing of ε in a certain range.

5.2 Protection effectiveness analysis

In the section, we test the protection effectiveness of the
proposed algorithms mainly through the trajectory devia-
tion rate and the trajectory accurate rate, where the trajec-
tory deviation rate is the angle θ formed by the modified
polygon centroid and the original trajectory points, shown
as Figure 3, and if the trajectory deviation rate is bigger in
a certain range, then the protection effectiveness is higher;
the trajectory accurate rate is used to test the protection ef-
fectiveness and usability of the noise-added data, and if the
trajectory accurate rate is smaller in a certain range, then
the usability is higher.

In the test, we compute the trajectory accurate rate
through the following methods: 1) set the coordinate
(ai, bi) of the polygon centroid; 2) compute the hypotenuse
ci =

√
a2
i + b2i ; 3) compute the accurate rateZ =| 1− c′i

ci
|,

where ci is the original hypotenuse and c′i is the noise-
added hypotenuse. The trajectory deviation rate is bigger
in a certain range, the protection effectiveness is higher;
the trajectory accurate rate is smaller in a certain range,
the usability is higher. So, when we set ε = 5, 10, 15
and r = 40, 50, 60, 70, 80, 90, 100, 110 respectively, Ta-
ble 3,4,5 show the deviation rate and accurate rate of the
trajectory data.

10Gowalla is a location-based social networking website where users
share their locations by checking-in.

11The test environment is under Win10 OS, Intel i5 CPU 2.3Ghz and
8G RAM.

Figure 3 Trajectory Deviation Angle

From the Table 3, when ε = 5 and r < 90, we may
know that the polygon centroid is not changed with the in-
creasing of r , thus the deviation rate θ and the accurate
rate Z are also not changed. Such shows that in the range
of r < 90, the new points are not selected to build the new
polygon, thus the polygon is not modified. when r >= 90,
the new points are selected to build the new polygon, thus
the polygon centroid is recomputed, thus the deviation rate
θ and the accurate rate Z are changed. Such shows that the
deviation rate θ could become big with the increasing of r,
and the data usability becomes small. Also, from the Table
4 and the Table 5, when ε = 10, 15, we may get the similar
results as that of the Table 3. Additionally, when we fixedly
set r = 70 and ε = 1, 2, 3, 4, ......15 respectively, Table 6
shows the deviation rate and accurate rate of the trajectory
data. From the Table 6, we may know that the deviation
rate θ and the accurate rate Z are always increasing with
the increasing of ε. That is because the constraint condi-
tion becomes small with the increasing of ε in the differ-
ential privacy mechanism. However, such also shows that
the deviation rate θ becomes big so that the data usability
becomes small.

6 Conclusions
Currently, because the records of trajectory data are dis-
crete in database, some existing privacy protection schemes
are difficult to protect trajectory data. In this paper, we pro-
pose a trajectory data privacy protection scheme based on
Laplace’s differential privacy mechanism. In the proposed
scheme, the algorithm first selects the protected points from
the user’s trajectory data; secondly, the algorithm builds
the polygons according to the protected points and the ad-
jacent and high frequent accessed points selected from the
accessed point database, then the algorithm calculates the
polygon centroids; finally, the noises are added to the poly-
gon centroids by the differential privacy method, and the
new polygon centroids are used to replace the protected
points, and then the algorithm constructs and issues the
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Table 2: The Efficiency of Extracting Available Data
ε 1 2 3 4 5 6 7 8 9 10 11 12

Time (ms) 4 4 3 3 3 4 3 3 3 3 3 2

Table 3: Trajectory Deviation Rate And Accurate Rate
(ε = 5)

r ci c′i Z θ
40 645.264 613.125 0.049807 23.2510
50 645.264 613.125 0.049807 23.2510
60 645.264 613.125 0.049807 23.2510
70 645.264 613.125 0.049807 23.2510
80 645.264 613.125 0.049807 23.2510
90 608.511 572.839 0.058621 24.7920

100 608.511 572.839 0.058621 24.7920
110 608.511 572.839 0.058621 24.7920

Table 4: Trajectory Deviation Rate And Accurate Rate
(ε = 10)

r ci c′i Z θ
40 645.264 613.096 0.049852 23.2532
50 645.264 613.096 0.049852 23.2532
60 645.264 613.096 0.049852 23.2532
70 645.264 613.096 0.049852 23.2532
80 645.264 613.096 0.049852 23.2532
90 608.511 572.809 0.05867 24.7941

100 608.511 572.809 0.05867 24.7941
110 608.511 572.809 0.05867 24.7941

Table 5: Trajectory Deviation Rate And Accurate Rate
(ε = 15)

r ci c′i Z θ
40 645.264 612.964 0.050057 23.2584
50 645.264 612.964 0.050057 23.2584
60 645.264 612.964 0.050057 23.2584
70 645.264 612.964 0.050057 23.2584
80 645.264 612.964 0.050057 23.2584
90 608.511 572.665 0.058908 24.7996

100 608.511 572.665 0.058908 24.7996
110 608.511 572.665 0.058908 24.7996

Table 6: Trajectory Deviation Rate And Accurate Rate
(r = 70)

ε ci c′i Z θ
1 645.264 613.126 0.049806 23.25090
2 645.264 613.126 0.049806 23.25090
3 645.264 613.126 0.049806 23.25090
4 645.264 613.126 0.049806 23.25090
5 645.264 613.125 0.049807 23.2510
6 645.264 613.125 0.049807 23.2510
7 645.264 613.122 0.049812 23.2514
8 645.264 613.117 0.049819 23.2518
9 645.264 613.109 0.049833 23.2524
10 645.264 613.096 0.049852 23.2532
11 645.264 613.079 0.049879 23.2541
12 645.264 613.057 0.049913 23.2551
13 645.264 613.030 0.049954 23.2562
14 645.264 612.999 0.050003 23.2573
15 645.264 612.964 0.050057 23.2584

new trajectory data. The experiments show that the run-
ning time of the proposed algorithms is fast, the privacy
protection of the scheme is effective and the data usability
of the scheme is higher.
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