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Recently, serval reasoners for very expressive fuzzy Description Logics have been implemented. However, 

in some cases, applications do not require all the reasoner services and would benefit from the efficiency 

of just certain reasoning tasks. To this scope, we are interested in the individual fuzzy classification issue. 

In fact, decision-making applications for real world domain is often based on classifying new situations 

into fuzzy categories. Therefore, we propose Fuzzy Realizer to offer an effective classification even with 

imprecise/vague or incomplete knowledge so that appropriate decision can be made. Fuzzy Realizer is a 

Java prototype implementation for realizing fuzzy ontologies. It supports the well-known fuzzy description 

logic Z SHOIN (D). It allows (i) fuzzy concrete domains, (ii) modified and (iii) weighted concepts. It is able 

to (i) classify new individuals, even with incomplete descriptions, (ii) provide a more human-oriented 

classification by hiding the crisp boundaries between different fuzzy categories and (iii) to populate fuzzy 

ontologies which address an aspect of fuzzy ontologies evolution, a topic which is rarely discussed. 

Povzetek: Razvit je postopek za individualno klasifikacijo s pomočjo mehke logike. 

1 Introduction 
Crisp ontologies, based on first-order logic formalisms, 

are not suitable for handling imperfect knowledge. 

Knowledge imperfection, manifested by incomplete, 

vague or imprecise notions, is inherent to several real-

world domains, and this problem has therefore attracted 

the attention of many research communities [21, 22, 26, 

28, 29]. Several approaches have incorporated fuzzy logic 

into ontology languages and description logics (DLs) to 

build so-called fuzzy ontologies. Indeed, a number of 

reasoners for very expressive fuzzy DLs have been 

implemented [31], including FiRE [25], FuzzyDL [3, 6] 

and DeLorean [2]. Moreover, a number of optimization 

techniques have been proposed recently for improving 

reasoning efficiency for very expressive fuzzy DLs [5, 

24]. However, in some cases, applications do not require 

all the reasoner services and would benefit from the 

efficiency of just certain reasoning tasks. To this scope, 

we have been interested in the fuzzy ontologies realization 

issue.  

Realizing fuzzy ontologies with new individuals is a very 

important reasoning task. Using this reasoning task, 

several real world domains can benefit from affective 

decision-making applications. Indeed, in a domain like e-

health, doctors always classify their patients into fuzzy 

categories. When referring to a patient’s fever, for 

example, if we have a body temperature of 38.5°, it will 

be stated that the patient has a “high” fever. However, a 

temperature of 38° will present a “high” fever, but also it 

can be stated that it is an “average” fever. A similar 

classification can be used in industry where Industrial 

Process Control Systems collect data, such as temperature 

and pressure of gas and oil pipes, for example, to be 

classified as safe situations or not. Based on this 

classification appropriate decisions can be made.               

Classification is the main reasoning mechanism for 

systems based on class/instance models. It is one of the 

most powerful and fundamental human inference 

mechanisms. It maintains the stability of the knowledge 

base in the presence of new knowledge, by connecting 

each knowledge to its class. However, since we are 

handling imperfect knowledge, giving exact definitions of 

class boundaries seems to be a very difficult, perhaps even 

impossible, task. Therefore, we have integrated fuzzy 

logic with classification to enable the attachment of an 

individual to several fuzzy classes. Such attachment 

makes the sharp borders between classes disappear, which 

better reflects reality and allows a more human-oriented 

modelling process.  

Having these ideas in mind, we propose a fuzzy-based 

approach for realizing fuzzy ontologies by classifying new 

individuals and connecting them to their most specialized 

concepts. Based on this classification operators may take 

the appropriate decisions. With our approach, two features 

of knowledge imperfection can be handled: 

vagueness/imprecision and incompleteness. Indeed, based 

on a fuzzy classification algorithm, the proposed 

reasoning service can classify new individuals, even with 

incomplete description. To validate our ideas, we have 
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implemented this algorithm in what we call Fuzzy 

Realizer. It is a Java prototype implementation supporting 

the fuzzy DL SHOIN (D) under Zadeh semantics (Z SHOIN 

(D)).  It allows (i) fuzzy concrete domains, (ii) modified 

and (iii) weighted concepts.  

The underling key of Fuzzy Realizer is that (i) it can 

classify new individuals, even though we may lack 

information about them, (ii) it provides a more human-

oriented classification process by assigning an individual 

to serval fuzzy concepts with different membership 

degrees. Finally, (iii) it can populate fuzzy ontologies 

which address an aspect of fuzzy ontologies evolution, a 

topic which is rarely discussed. Indeed, ever since the 

development of ontologies, especially from large text 

corpuses, became a well-understood problem [23], 

reconstruction is always preferred to an evolutionary 

process. In fact, the evolution problem is challenging [33] 

and need to be analysed from different point of views, 

thus, the present paper addresses the individual 

classification issue by providing a realization service for 

fuzzy ontologies.  

The remainder of this paper is organized as follows. 

Section 2 presents some preliminaries that will be used in 

the rest of the paper, namely, fuzzy logic and classification 

reasoning mechanism. Section 3 reviews some related 

works and situates our work in that context.  Section 4 

discusses the proposed fuzzy realization algorithm then, 

an extension of this approach, namely a fuzzy relocation 

process will be presented in Section 5. To validate our 

ideas, we present in Section 6 Fuzzy Realizer. Finally, 

Section 7 concludes the paper with ideas for future 

research. 

2 Preliminaries   
This section describes some background material 

regarding (i) fuzzy logic and its use for representing 

imperfect knowledge, and (ii) the classification reasoning 

mechanism which enables their classification. 

2.1 Fuzzy logic and fuzzy ontology 

Fuzzy logic was designed to solve the problem of 

vague/fuzzy and imprecise knowledge representation. It 

was introduced by L. A. Zadeh in the mid-1960s as an 

extension of Boolean logic [34]. In classical set theory, 

there are two possibilities: elements either belong to a set 

or they do not. This theory does not consider many 

situations that are frequently encountered in everyday life, 

where imprecision is manifested by terms like high, 

young, hot and the like. Fuzzy logic, based on fuzzy set 

theory, is designed to consider this kind of situation. It is 

based on the notion of partial membership, where each 

element belongs partially or gradually to defined fuzzy 

subsets.  

Definition. Let X be a set of elements. A fuzzy subset A 

of X is defined by a function called the membership 

function and is denoted as 𝝁𝑨(𝒙). 𝝁𝑨(𝒙) is a mapping 

which takes any value from the real interval [0, 1]:      

𝜇𝐴(𝑥): 𝑥 → [0, 1], 𝑥 ∈ 𝐴 

The crisp set operators negation, intersection and union 

are extended to fuzzy subsets and performed by fuzzy 

negation, t-norm and s-norm functions, respectively, so 

that one can form different fuzzy logics. The most widely 

used one is Zadeh fuzzy logic, known as Zadeh Semantics 

[4]. It is a combination of Gödel conjunction (tG) and 

disjunction (SG) (tG = min (a, b) and SG = max (a, b)) and 

Łukasiewicz negation (NL) (NL = 1 – a).  

Fuzzy calculus is a vast and very flexible research field; 

indeed, it is used in many domains, one of them is fuzzy 

ontologies development [5, 1, 14]. Fuzzy ontologies 

extend crisp ones by interpreting concepts and roles as 

fuzzy sets of individuals and binary relations respectively. 

Unlike crisp ontologies which allow an element to be 

described or not, {0, 1}, by each concept in the ontology, 

fuzzy ontologies associate an element to each concept 

using a membership degree in the interval [0, 1]. Such 

association allows the attachment of each element to 

different concepts with different membership degrees. 

Consequently, fuzzy ontologies have a more flexible 

representation capability than crisp ones. In fact, vague 

notions, manifested by fuzzy terms like high_temperature, 

very_close_to and the like, are quite comment in human 

language, and they can be represented by means of fuzzy 

ontologies elements using different constructs [29]; the 

most important of these are:  

Explicit fuzzy concepts. Represented by means of fuzzy 

membership functions using fuzzy concrete domains such 

High_temperature which is a fuzzy concept defined with 

the fuzzy concrete domain High with its Right-Shoulder 

membership function, High (37, 38.5) as: 

High_temperature ≡ temperature ⨅  Degree.High 

Modified concepts. Fuzzy modifiers, such as very or 

slightly, are defined by functions fm: [0, 1] [0, 1], applied 

to change membership functions. For instance, 

Very_high_temperature is a fuzzy modified concept 

defined with Very as a fuzzy modifier having the function 

fVery (x) = x2 as: 

Very_high_temperature ≡ temperature ⨅ 

 Degree.Very (High) 

Weighted concepts. Sometimes we want to express the 

importance of concepts representing preferences or 

priorities, such as 0.8 (C). These concepts, called fuzzy 

weighted concepts, are defined as follows:  

D ≡ w (C) / w ∊ [0, 1] 

For the rest of the paper, m and fm are used to represent 

fuzzy modifiers and their membership functions, while w 

(w ∊ [0, 1]) is used to express weights of concepts. 

In this section, we have provided some preliminaries 

regarding fuzzy ontologies by introducing the basic 

concepts which are involved. For a more in-depth 

presentation, we refer the reader to [30]. 

2.2 Classification reasoning mechanism 

Classification is the fundamental inference mechanism for 

object-based representations. Indeed, structuring 

knowledge into classes, subclasses and instances promotes 

the use of classification to retrieve implicit knowledge. To 

this end, classification can be used to (i) categorize a set 

of objects into category graphs, (ii) add a new category to 
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an already created graph or (iii) to add a new object to its 

most specialized categories in the created graph [18]. This 

process, also called individual classification, refers to 

ontology realization. It is used to retain the stability of an 

already created knowledge base in the presence of a new 

individual by connecting it to the most specialized 

concepts it belongs to (see, Figure 1).  

Classification of individuals consists of precisely selecting 

their belonging classes. Therefore, different classes have 

to be well separated. However, giving exact definitions of 

class boundaries is a very difficult, perhaps even 

impossible, task. The difficulty comes from the vagueness 

of the modelled knowledge. To address this problem, we 

have integrated fuzzy logic with classification to enable 

the use of non-numerical values which allow non-sharp 

definitions of class boundaries. Fuzzy classification [16, 

32] is the process of grouping elements into fuzzy sets. 

The membership of these elements to each fuzzy set is not 

full but partial to some degree. The main difference 

between crisp and fuzzy classification is that in fuzzy 

classification, an element can belong to several fuzzy 

classes with different membership degrees. Such 

membership makes the sharp borders between classes 

disappear, which better reflects reality and allows a more 

human-oriented modelling process.  

Figure 1: An individual classification example. 

3 Related work 
Work related to our research context explores two 

research fields: (i) handling imperfect knowledge and (ii) 

classification reasoning mechanisms.  

3.1 Handling Imperfect knowledge  

It has been widely pointed out that crisp ontologies are not 

suitable to handle imperfect knowledge. Thus, many fuzzy 

approaches have been proposed to cover this limitation [1, 

3, 4, 7, 13, 27]. As a result, a few methodology for 

developing fuzzy ontologies have been proposed and a 

number of fuzzy extensions of DL have been used. 

However, like crisp ontologies, the success of fuzzy ones 

depends on the availability of effective software allowing 

their exploitation. Consequently, the reasoning task has 

been a very interesting topic for many researchers. 

DeLorean (DEscription LOgic REasoner with 

vAgueNess) [2] was the first reasoner that supported a 

fuzzy extension of the DL SROIQ. As far as we know, 

DeLorean is the only reasoner that supports fuzzy OWL2. 

Based on Zadeh Semantics, it represents fuzzy operators 

and reduces the resulting fuzzy Z SROIQ knowledge base 

to a crisp one by creating new crisp concepts and roles 

representing α-cuts [20] of original fuzzy ones. Other quite 

similar studies have proposed reasoners for expressive 

fuzzy DLs. For instance, Fire implements a tableau 

algorithm for fuzzy SHIN restricted to Zadeh Semantics 

[25]. YADLR is a Prolog implementation based on linear 

programming [17]. It supports a fuzzy extension of 

ALCOQ under Łukasiewicz and Zadeh fuzzy logics and 

allows variables as degrees of truth. In order to benefit 

from the full expressivity of a less expressive language 

and then guarantee the reasoning efficiency, LiFR was 

proposed [31]. It is a lightweight fuzzy reasoner oriented 

to mobile devices and the supported language is f-DLP. It 

allows fuzzy concept assertions and weighted concepts. 

FuzzyDL [3, 6] is an important fuzzy reasoner supporting 

fuzzy extensions of SHIF (D) under Zadeh, Łukasiewicz 

and classical semantics. It was successfully used in some 

practical applications. Its interesting features are 

aggregation of fuzzy concepts, explicit fuzzy set 

membership functions and fuzzy modifiers.  

Like all these cited works, we were interested in reasoning 

with imperfect knowledge using fuzzy logic. However, 

unlike them, we have been interested in just one reasoning 

task to propose a fuzzy ontologies realization service as 

much complete and efficient as possible. As far as we 

know, no other work exploits the fuzzy classification 

mechanism with fuzzy ontologies especially with 

incomplete individuals. On the other hand, there have 

been some previous attempts to combine this reasoning 

mechanism with fuzzy logic in other research fields, such 

as pattern recognition and data mining.  

3.2 Classification reasoning mechanism 

fCQL (Fuzzy Classification Query Language) is a toolkit 

for classification, analysis and decision support applied in 

the marketing domain of a telecom company [19,  32].  

Meier et al. claimed that ‘Using linguistic terms and 

variables hides the complexity of the domain and permits 

a more intuitive and human-oriented querying process in 

different application domains’ [19, pp. 586-587]. 

Therefore, they exploited the advantages of fuzzy logic to 

reduce the business data complexity and extracts valuable 

hidden information through fuzzy classification. fCQL 

allows formulating fuzzy queries which are then 

transformed into SQL statements. This approach benefits 

from fuzzy logic in classification and querying. However, 

its main disadvantage is that it is a data oriented approach, 

thus semantic retrieval of resources is not supported.   

A closer approach to ours is [12], which defines a semi-

automated musical genre classification mechanism using 

an ontological representation. Fuzzy classification was 

used to allow the classification of music resources into 

musical genres based on a score provided by the resource 

composer expressing its viewpoint. Indeed, in music 

classification, different users are not required to agree 

about the classification of a specific music resource in the 

same musical genre. In this approach, fuzzy classification 
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is flexible regarding the different interpretations of music 

genres. However, the consideration of vagueness is quite 

limited because (i) music resources are represented by 

crisp ontologies, (ii) fuzzy logic is restricted to express 

users’ viewpoints and (iii) the membership degree is not 

calculated based on membership functions but is instead 

given by the user. Finally, in this approach, (iv) knowledge 

imperfection was considered without reference to 

knowledge incompleteness, which is an important feature 

of fuzzy knowledge.   

4 A fuzzy realization algorithm 

Using an illustrative example, we will study and improve 

upon a fuzzy realization algorithm proposed in a previous 

work [9]. The following algorithm has been extended and 

improved in order to accelerate the classification process.  

Table 1: Fuzzy realization algorithm  

The proposed algorithm allows the realization of fuzzy 

ontologies and results to evolved ones in which the new 

individual A will be attached to its most specialized 

concepts. First, the user provides the necessary knowledge 

(line 1) to start the classification loop. This loop consists 

of exploring the hierarchy and matching the current 

concept C* with A (line 4), starting at the hierarchy root 

TOP (line 2). The Matching procedure verifies A 

’membership in C* and, if A belongs to C*, the concept 

will be marked with a label and a membership degree. To 

accelerate the classification, the Marks_Propagation 

procedure (line 5) propagates marks to different concepts 

related to C* based on some logical rules. The next 

concept to be matched with A is chosen by the 

Next_Concept function (line 6). If there are no more 

unmarked concepts, Next_Concept returns null which 

terminate the classification.  

Illustrative example. In the following sections, we will 

study the proposed algorithm for the following illustrative 

example; it is an excerpt from a simple fuzzy knowledge 

base about persons: 

TBox 

[Ax 1] Person ⊑⊤         [Ax 2] Male ⊑⊤  
[Ax 3] Female ⊑⊤                      [Ax 4] Male ≡ ⌐ Female 

[Ax 5] Man ≡ Person ⨅ Male    

[Ax 6] Woman ≡ Person ⨅ Female     

[Ax 7] Young ≡ Person ⨅ ∃ HasAge.YoungAge  

[Ax 8] Adult ≡ Person ⨅ ∃ HasAge.AdultAge  

[Ax 9] Teacher ≡ Adult ⨅ ∃ HasFunction.Teacher  

[Ax10]VeryYoung ≡Person⨅∃HasAge.very (YoungAge)  

[FCP 1] YoungAge (x) = Left-shoulder (10, 30)  

[FCP 2] AdultAge (x) = Trapezoïdal (30, 35, 50, 60)  

[FCP 3] Very (x) = x2  

ABox 

[FCA 1] 〈Tom: Person = 1〉    [FCA 2] 〈Tom: Male = 1〉 
[FCA 3] 〈Lina: Person =1〉      [FCA 4] 〈Lina: Female = 1〉
    

Person, Male and Female are defined as atomic concepts. 

Axioms [Ax 5] and [Ax 6] define crisp concepts, while 

[Ax 7]–[Ax 10] describe some fuzzy ones. [FCP 1] and 

[FCP 2] concern fuzzy concrete predicates YoungAge and 

AdultAge; they indicate the degree to which a person is 

young or adult, respectively, using left-shoulder and 

trapezoidal membership functions. [FCP 3] defines the 

fuzzy modifier Very. Finally, the ABox contains some 

fuzzy concept assertions to define two individuals: Tom 

and Lina. 

4.1 Initialization ( ) procedure 

To start the classification loop, we need to collect some 

information about the new individual in the form of 

(attribute, value) pairs. The user must provide as much 

knowledge as possible so that the algorithm can classify 

the individual as precisely as possible in the hierarchy. If 

the user do not have enough information, the Initialization 

procedure accepts the value ‘Unknown’. Consequently, 

the proposed algorithm can classify incomplete 

individuals.  

Definition.  Let A be an individual defined by its 

description in the form of a set of (attribute, value) pairs. 

If we are missing information about an attribute of A, then 

it is incomplete. Formally: 

A is incomplete  A = {(Att1, Val1)… (Attn, Valn)} and  

 i / (Atti, Unknown) ∊ A. 

Example 1. Consider our ABox, having the individual 

Tom with its description: Tom = {(Name, Tom), (Age, 

33), (Size, 1.7), (Function, Unknown) …}. Since we are 

missing information about the attribute “Function”, Tom 

is incomplete.   

4.2 Matching (C*, A) procedure 

Matching is the algorithm key procedure. It has the role of 

checking an individual’s membership in the current 

concept based on a membership function. Classical, two-

valued, membership function has been successfully 

applied to consider complete and precise knowledge, for 

which we can exactly define their belonging classes. 

However, it seems to be inappropriate to be used for 

managing fuzzy knowledge bases, in which we handle 

imprecise and incomplete knowledge. To cover this 

limitation, we have chosen the membership function with 

three values. The scope of this function is extended to 

accept the value possible, if we do not have sufficient 

information for affirming or denying an instance’s 

membership in a given class. This function can be 

described as follows, given that x is an instance and C is a 

class with the membership function C(x): 

Algorithm1. Fuzzy realization algorithm 

Input:     H: Fuzzy concepts hierarchy (Fuzzy Ontology) 

              A: New individual 

Output:  Evolved fuzzy ontology  

1. Initialization (  ); 

2. C*:= TOP (H); 

3. While (not empty (C*)) do 

4.      Matching (C*, A); 

5.      Marks-Propagation (C*, label, degree) ; 

6.      C*:= Next-Concept (C* ); 

7. End while 
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𝐶(𝑥) = {

𝑠𝑢𝑟𝑒                 𝑖𝑓 𝑥 ∈ 𝐶
𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒    𝑖𝑓 𝑥 ∉ C
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Based on this function, Matching procedure marks the 

current concept C* with a label, indicating whether it is 

sure, possible or impossible for the new individual (see 

Figure 2). Since there is no full membership in fuzzy 

ontologies, C* will be marked with another mark 

expressing the degree of this membership. In sum, 

Matching procedure generates the following output: ⟨C*, 

label, degree⟩ where label ∊ {S, P, I} and degree ∊ [0, 1], 

if the new individual belongs to C* (that is, label = sure), 

or null if there is no membership. For the rest of the paper, 

S, P and I will be used to represent, respectively, the marks 

Sure, Possible and Impossible:    

 ⟨C*, S, d⟩ (A is C* with a truth-value of d): if A’s value 

for each attribute satisfies the constraints of C*. This 

membership can be determined only if A is complete. 

 ⟨C*, I, null ⟩ (A is not C*): if A’s value for at least one 

attribute does not satisfy the constraints in C*. In this case, 

we do not consider whether A is incomplete. 

 ⟨C*, P, null ⟩ (A may be C*): if A is incomplete and its 

values do not stand in contradiction with C*. 

Figure 2: Fuzzy classification of an individual based on 
concept marking.  

Table 2: Matching (C*, A) procedure. 

If C* includes some attributes that are not defined in the 

description of A, then Matching asks the user for values 

for these attributes (lines 2–4). Using the function 

Get_degree, the membership of A in C* is computed (line 

5). If there is no membership (Degree = 0), the matching 

stops and C* will be marked Impossible (lines 12–14). If 

all constraints are satisfied (that is, Degree > 0), two cases 

are considered:  

 A is incomplete: the matching stops and C* will be 

marked Possible (lines 6–8).  

 A is complete: C* will be marked Sure to some 

'Degree' (lines 9–11).  

In order to mark C*, the function Get_degree calculates 

A’s degree of membership in C*. C* can be described 

based on several logical expressions: concept conjunction, 

modified concept, explicit fuzzy concept etc. Based on the 

description of C* and under Zadeh Semantics, the 

Get_degree function proceeds according to the following 

cases:  

 Concept conjunction C* ≡ C1⨅ …⨅Cn :  

Degree (C*, A) = min (Degree (Ci, A))/ i=1..n. 

 Concept disjunction C* ≡ C1⨆ …⨆Cn : 

Degree (C*, A) = max (Degree (Ci, A)) / i=1..n. 

 Concept negation C* ≡  C: 

Degree (C*, A) = 1- Degree (C, A) 

 Fuzzy modified concept C* ≡ m(C): 

Degree (C*, A) = fm ( Degree(C, A)). 

 Fuzzy weighted concept C* ≡ w (C):  

Degree (C*, A) = w * Degree(C, A) 

 Explicit fuzzy concept C* ≡  Attribute.Range, where 

Range is a fuzzy predicate:  

Degree (C*, A) =  fRange(A.Attribute).  

eg.  Age.YoungAge, results to  fYoung (A.Age) 

 Limited existential quantification: C* ≡ R.C. In this 

case, the function returns the maximum degree of 

mumbership of all individuals (Ai) related by the role R 

in the concept C.  

Degree(C*, A)= max (Degree(C, Ai)). 

 Value restriction: C* ≡ ∀ R.C. The function returns the 

minimum degree of mumbership of all individuals (Ai) 

related by the role R in the concept C:  

Degree (C*, A) =  min (Degree(C, Ai)). 

 Max cardinality C* ≡ ≥ n R.C:  

If | Degree (C, Ai) > 0 | >= n then Degree (C*, A) = 1 

else 0. 

 Min cardinality C* ≡ ≤ n R.C:  

If | Degree (C, Ai) > 0 | <= n then Degree (C*, A) = 1 

else 0. 

Example 2. Assuming that the individual Lina in our 

earlier illustrative example is a 12 years old girl. Since 

Person is already marked sure (⟨Person, S, 1⟩). Based on 

[Ax 7] and [CPF 1], Get_degree (Young, Lina) returns 0.9, 

Procedure1. Matching (C*, A)  

Input:    C*: Current concept  

             A={(Att1,Val1),…,(Attn,Valn)}:new individual 

Output: ⟨C*, label, degree⟩  
Degree : real; 

1 Begin 

2 If (  Vali = "") then 

3 Request the user; 

4 End if 

5 Degree := Get_degree (C*, A); 

6  If (Degree > 0) then 

7   If (∃ Vali = " Unknown") then 

8         Mark (C*, P, null); 

9  Else 
10         Mark (C*, S, Degree);         

11   End if 

12 Else  
13    Mark (C*, I, null); 

14 End if 

15 End. 
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and thus, the fuzzy concept Young will be marked ⟨Young, 

S, 0.9⟩.  
Example 3. Consider the individual Tom in Example 1. 

Based on its description, [Ax 8] and [FCP 2] and 

Get_degree (Adult, Tom) = 0.6, Matching will mark this 

concept as ⟨Adult, S, 0.6⟩. Moreover, based on [Ax 9], 

Teacher will be marked as ⟨Teacher, P, null⟩.   

4.3 Marks-propagation (C*, label, degree) 

procedure 

In order to accelerate the classification process, Marks-

propagation minimizes the number of concepts to be 

verified by Matching procedure. It is a recursive procedure 

that propagates marks to concepts related to C*, and to 

their related concepts. This procedure propagates marks 

based on the mark of C* according to certain rules and 

under Zadeh Semantics. For instance, according to [R.1], 

all synonymous of C* will be marked sure to some degree 

(d). Then, each of these synonymous (D) will be the new 

input of Marks-propagation, and then this procedure starts 

to propagate marks to all concepts related to it (D), and so 

on until there will be no rule to be applied or no unmarked 

related concept to be marked.   

[R.1]  If ⟨C*, S, d⟩, then D, C*  D ⟨D, S, d⟩. 

[R.2]  If ⟨C*, I, null⟩, then D, C*  D ⟨D, I, null⟩.  

[R.3]  If ⟨C*, S, d⟩, D, C*   D ⟨D, I, null⟩.  

[R.4]  If ⟨C*, I, null⟩), then D, C*   D ⟨D, S, d⟩ / d = 

Get_degree (D, A).  

In this case, we can confirm the membership of A in D. 

However, the degree of this membership must be 

computed by Get_degree (D, A).   

[R.5]  If ⟨C*, S, d ⟩, then D, C* ⊑ D, ⟨D, S, ≥ d ⟩. 

[R.6]  If ⟨C*, I, null⟩, D,D⊑C*,⟨D, I, null⟩.  

[R.7]  If ⟨C*, P, null⟩, then D, D ⊑ C*, ⟨D, label, null⟩ 

/ label  {S}.  

This rule can be used to check some consistency problems. 

Indeed, if C* is possible for A, then A is incomplete for 

C* and for all of its specific concepts.  

[R.8]  If ⟨C*, S, d⟩, thenD, D≡ m(C*), ⟨D, S, fm (d) ⟩.   

[R.9]  If ⟨C*, S, d⟩, D, D ≡ w(C*), then ⟨D, S, w*d⟩. 

Supposition1. D is defined by a concept conjunction 

including C* as D ≡ C* ⨅ C1⨅ … ⨅ Cn. 

[R.10]  If ⟨C*,I, null⟩, then ⟨D, I, null⟩.  

[R.11]  If ⟨Ci, S, di⟩, and ⟨C*, S, d⟩, then ⟨D, S, deg⟩ / deg 

= min (d, di) / i=1... n.  

[R.12]  If ⟨D, I, null⟩, ⟨C*, S, di⟩ and   j ∊ {1...n}          

⟨Cj, "", ""⟩ (which means that Cj is unmarked),       

 i ∊ {1...n} / i ≠ j ⟨Ci, S, di⟩, then ⟨Cj, I, null⟩. 

Supposition2. D is defined as a concept disjunction 

including C* as  D ≡ C* ⨆ C1 ⨆ … ⨆ Cn. 

[R.13]  If ⟨C*, S, d⟩, then ⟨D, S, deg⟩ / deg = max (d, di) 

/ i = 1…n.  

[R.14]  If ⟨Ci, I, null⟩/i = 1…n and ⟨C*, I, null⟩, then     

⟨D, I, null⟩. 

[R.15]  If ⟨D, S, d⟩, ⟨C*, I, null⟩ and  j ∊ {1...n}             

⟨Cj, "", ""⟩,  i ∊ {1...n} / i ≠ j ⟨Ci, I, null⟩, then 

⟨Cj, S, d⟩. 

Example 4. Recall the individual Tom from our 

illustrative example. Since Person and Male are already 

marked Sure ([FCA 1] and [FCA 2]), based on [Ax 5] and 

applying [R. 11], Marks-Propagation can propagate the 

mark Sure to the concept Man as: ⟨Man, S, 1⟩. It can also 

propagate the mark Impossible to Female based on [Ax 4] 

and applying [R. 3]. Moreover, Woman will be impossible 

for Tom based on [Ax 6] and applying [R. 10]. 

Example 5. During the classification of Lina in Example 

2, we have generated the result ⟨Young, S, 0.9⟩. Thus, 

based on [Ax 11] and using [R. 8], Marks-Propagation can 

mark the modified concept VeryYoung as ⟨VeryYoung, S, 

0.81⟩. Consider same concepts and the individual Tom. If 

Matching (Young, Tom) results to ⟨Young, I, null⟩, then 

the same mark will be propagated to VeryYoung as 

⟨VeryYoung, I, null⟩.    

4.4 Next-Concept (C*) function  

The aim of this function is to select a new unmarked 

concept to be the next current concept, by traversing the 

hierarchy of fuzzy concepts. We use the breadth-first 

search traversal, which is one of the important graph 

traversal techniques, to explore the hierarchy graph. Using 

this technique, Next-Concept selects the next unmarked 

neighbouring concept of C*. After testing all the 

unmarked neighbours, the function moves to the next level 

of the hierarchy and goes from left to right to select a new 

target concept. If there are no more unmarked concepts, 

Next_Concept returns null.  

In our work, we were inspired by the multi-viewpoints 

classification algorithm proposed in [18], in which 

classification was used in an object-oriented multi-

viewpoints representation system named TROPES. This 

algorithm provides multi-viewpoints instance 

classifications in which an instance can be classified in 

one or more viewpoints. This work was extended to 

consider individuals reclassification in multi-viewpoints 

ontologies [11]. These multi-viewpoints classification 

algorithms [11, 18] are both based on the hypothesis of the 

exclusiveness of sister classes, which assumes that classes 

at the same hierarchy level (called sister classes) represent 

mutually exclusive sets. Therefore, an individual which 

belongs to a class cannot belong to any of its sister classes. 

Unlike the cited works, our algorithm is not based on this 

hypothesis. Indeed, in our fuzzy ontology 

conceptualization, fuzzy concepts are modelled as fuzzy 

subsets [8]. The strength of fuzzy logic in knowledge 

representation lies in the intersections between fuzzy 

subsets, as an element can belong to several fuzzy subsets 

with different membership degrees. Consequently, the 

main advantage of fuzzy classification compared to 

classical one is that an element is not limited to a single 

class but can be assigned to several sister classes which 

better reflect reality.  
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Example 6. Consider the two fuzzy concepts Child and 

Teenager, defined by their trapezoidal membership 

functions (See Figure 3). Having the little girl Lina of 

Example 2, we can calculate these memberships: Child 

(Lina) = 0.66 and Teenager (Lina) = 0.33. These results 

dedicate that Lina is considered a Child but also a 

Teenager, with different membership degrees. 

Figure 3: Assignment of an individual to different fuzzy 

concepts. 

5 Individual relocation: an 

extension of the fuzzy realization 

approach   
The proposed algorithm provides a complete and efficient 

realization service for fuzzy ontologies. Indeed, it can 

efficiently classify individuals, even incomplete ones, in 

their appropriate belonging concepts with their 

membership degrees. With this, we can ensure an 

evolutionary aspect of fuzzy ontologies by realizing them 

with new individuals. 

After their classification, individuals may evolve and 

update their knowledge. Indeed, a person changes age, 

address or professions. Therefore, a relocation process is 

necessary to evolve fuzzy ontologies. To this scope, our 

proposed algorithm is extensible. In fact, an extension 

process of the fuzzy realization algorithm may consider 

another aspect of fuzzy ontologies evolution in which 

already classified, but updated, individuals can be 

relocated. This process allows an individual to migrate 

from its current belonging concepts to new ones that 

satisfy its updated description [10]. Changes of an 

individual description may be the result of an: 

 Enrichment of an incomplete individual by replacing 

its unknown value by a concrete one, 

 Modification of a concrete value by a new one, or  

 Impoverishment and removal of a concrete value and 

replacing it by an unknown one.  

In the first two cases, we have to handle a new data. This 

data can satisfy the fuzzy ontology constraints, and then, 

results to a consistent fuzzy ontology. It can also be in 

contradiction with some constraints and then generates an 

inconsistency: 

Fuzzy Ontology in a consistent state.  In this case, the 

individual belonging concepts must keep their marks as 

⟨Ci*, S, di⟩. However, the individual new description may 

allow it to migrate to concepts that are more specific. 

Thus, for this first case, a simple realization process is 

                                                           
1 As part of a masters’ project [15]. 

revived to descent the evolved individual in the hierarchy 

starting at its belonging concepts.   

Fuzzy Ontology in inconsistent state. To deal with this 

inconsistency, a fuzzy relocation process is invoked to 

migrate the updated individual to its new belonging 

concepts. To this end, the individual is raised up in the 

fuzzy hierarchy, by following the path of its sure super-

concepts until the first super-concept for which the new 

data satisfies its constraints. It should be noted that all 

super-concepts along the individual path (excepting the 

last one) must change theirs marks from ⟨Ci*, S, di⟩ to 

⟨Ci*, I, null⟩. To complete the individual relocation, the 

updated individual must descent in fuzzy hierarchy until it 

reaches its new belonging concepts. Indeed, the individual 

updated description can satisfy other concepts that are 

more specific than the first consistent super-concept. 

Thus, starting at this concept the fuzzy realization process 

is evoked. 

The individual knowledge can evolve to an unknown 

value. This impoverishment will not affect the ontology 

consistency. However, the evolved individual becomes 

incomplete since the concrete value of the updated 

attribute has been changed with an unknown one. To 

handle this change, the fuzzy ontology must evolve and 

the updated individual must raise up, by following the path 

of its super-concepts until the first sure super-concept in 

which there is no specification for the impoverished 

attribute. All these super-concepts (excepting the last one) 

must change their marks from ⟨Ci*, S, di⟩ to ⟨Ci*, P, null⟩. 
Unlike the enrichment/modification, in the case of an 

individual impoverishment, once the ascent to the first 

sure super-concept is done no further descent is possible. 

Indeed, there is no concrete new data to be matched with 

more specific concepts.  

6 Validation of the proposed 

algorithm  
In order to validate our ideas, we have implemented1 the 

proposed fuzzy realization algorithm as Fuzzy Realizer. It 

is a Java prototype implementation that supports a fuzzy 

extension of the well-known DL Z SHOIN (D). Fuzzy 

Realizer has a graphical interface for displaying the fuzzy 

ontology in the form of a coloured directed acyclic graph 

(DAG), in order to improve the results presentation and 

thereby facilitate the decision-making process (see Figure 

4). Fuzzy Realizer has a modular architecture and is 

divided into three modules: the Parser, Visualization and 

Classification modules. The Parser translates the fuzzy 

ontology into an internal format, so that any fuzzy 

ontology encoded in any language (OWL, Fuzzy OWL, 

OWL 2, ...) can be used. The Visualization module 

displays the loaded ontology hierarchy in the form of a 

DAG. Finally, Classification, the proposed system’s key 

module, calculates the new individual’s membership in 

different (fuzzy) concepts. Once it is attached to its 

belonging concepts, the Visualization module displays the 

concept’s marks on the created DAG. Each mark is 

represented by a colour, which produces a coloured DAG. 
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The colours red, orange and green are used to represent, 

respectively, impossible, possible and sure concepts.  

 

Figure 4: Fuzzy Realizer interface.

In order to better facilitate the decision-making process, 

membership degrees are represented by numerical values 

on the coloured graph nodes and also by gradations of the 

colour green, ranging from light green, which represents a 

low membership, to dark green, which represents full 

membership (see Figure 5).  

In order to evaluate the proposed system’s performance, 

we carried out a range of experiments with different fuzzy 

ontologies, beginning with a simple Medical Checkup 

Fuzzy Ontology (MCFO) and then using more highly 

expressive and voluminous fuzzy ontologies (Fuzzy 

Wine2, Matchmaking3, Multi-criteria decision making4). 

We present the results for two of these ontologies in the 

following subsections. We also compared our Fuzzy 

Realizer and the well-known fuzzy reasoner FuzzyDL [6, 

9]; this was done by replacing the Classification module 

with the fuzzy reasoner FuzzyDL. 

6.1 Medical Checkup Fuzzy Ontology 

(MCFO) 

 Uncertainty is the central critical fact about reasoning in 

e-health domain. Usually, doctors cannot give exact 

diagnoses and laboratories cannot report exact analysis 

results. Despite this uncertainty, doctors have to make 

decisions. In order to implement a decision-making 

                                                           
2http://users.abo.fi/rowikstr/FuzzyWineOntology/FuzzyWineOntology.
owl 
3http://www.umbertostraccia.it/cs/software/FuzzyOWL/ontologies/m
atchmaking.owl 

process using medical check-up fuzzy knowledge, we 

developed MCFO using the Fuzzy DL SIQ (D) and Fuzzy 

OWL. Then, using Fuzzy Realizer, we realized it with new 

individuals. Table 3 represents the description of the new 

(incomplete) individual Tim.  

Table 3: description of the new individual Tim. 

Although it is an incomplete individual, Fuzzy Realizer 

was able to classify it as low as possible in the hierarchy 

(see Figure 5) by providing the set of its sure (to some 

degree) and possible fuzzy concepts. This classification 

cannot be done using FuzzyDL since it does not offer a 

service for classifying incomplete individuals.  

4http://www.umbertostraccia.it/cs/software/FuzzyOWL/ontologies/m
ultiCriteria.owl 

Attribute  Value  

Body Temperature 37.45° 

Blood Sugar 1.0 g/l 

Body Mass Index 26.0 kg/m² 

Heart Pulse Unknown  

Respiratory Rate Unknown 

Diastolic Blood Pressure 70.0 mmHg 

Systolic Blood Pressure 100.0 mmHg 

Calcium Level 2.3 mmol/l 
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Figure 5: Zoom of the Classification of the incomplete individual Tim

6.2 Fuzzy Wine ontology 

The fuzzy extension of the well-known and highly 

expressive Wine ontology supporting the DL SHOIN (D) is 

the most voluminous open source fuzzy ontology. Thus, 

we used this ontology in order to test our proposed 

system’s performance. Despite its large size, we have been 

able to realize it with new individuals using our prototype. 

Figure 6 shows the classification of the new individual 

ChateauDeMeursauCru2007, described in Table 4, which 

is considered to be a HighUWSWine to degree 0.1 and a 

fully (degree = 1) HighPriceWine and TableWine. 

Figure 6: Realizing Fuzzy Wine. 

Attribute  Value  

Price 38.6 

PH 3.42 

Acidity 5.8 

Sugar 1.7 

UWSScore 89.0 

Flavor ModerateWineFlavor 

Maker ChateauDeMeursaultWinery 

Table 4: description of the new individual 

ChateauDeMeursauCru2007. 
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6.3 Discussion  

Although Fuzzy Realizer is considered to be a simple 

prototype providing a realization service for fuzzy 

ontologies, several series of tests show that it offers an 

efficient realization service since it results to correct 

classifications (all results are verified by domain experts). 

Moreover, it is capable of realizing any fuzzy ontology 

without any constraint on the represented knowledge’s 

imperfection. It is also able to realize highly expressive 

fuzzy ontologies even with incomplete individuals. 

Indeed, it was used to realize the most voluminous open 

source fuzzy ontology (Fuzzy Wine). 

Figure 7: Response time of Fuzzy Realizer modules. 

More importantly, its response time is within the limits of 

acceptability compared to the well-known fuzzy reasoner 

FuzzyDL as shown in Figure 7. All of these characteristics 

allow the proposed prototype to be tested in a real 

application and to handle real world knowledge. In sum, 

despite its simplicity, Fuzzy Realizer can be considered as 

an optimal solution for realizing fuzzy ontologies. In 

contrast, FuzzyDL is one of the most expressive and 

important fuzzy reasoners. However, its long runtime 

compared with Fuzzy Realizer and its inability to classify 

individuals in case we may lake information, which is a 

quite common problem, are weaknesses which cannot be 

ignored. 

7 Conclusion 
In this paper, we have proposed a fuzzy-based approach 

for reasoning with imperfect ontological knowledge. As a 

reasoning mechanism, we have integrated fuzzy logic with 

the most powerful human reasoning activity, known as 

classification. Using fuzzy classification, we have 

proposed Fuzzy Realizer, a java prototype for classifying 

new individuals into fuzzy ontologies. It allows (i) fuzzy 

concrete domains, (ii) modified and (iii) weighted 

concepts. We have been interested in just one reasoning 

task to address an aspect of fuzzy ontologies evolution 

namely, the realization issue. The proposed prototype can 

realize fuzzy ontologies even with incomplete individuals. 

In addition, it offers a more human-oriented classification 

by assigning an individual to several fuzzy sister classes 

which hides the sharp boundaries between them.  

As future work, we would like to extend the proposed 

prototype so that it will not be limited to Zadeh semantics, 

but to be more flexible by supporting more fuzzy logics, 

for instance Łukasiewicz, Gödel or Product logics. We are 

also intended to implement the relocation process 

extension so that we can test and evaluate the proposed 

idea. Finally, in order to improve Fuzzy Realizer’s 

performance, we would like to minimize the use of the 

mark ‘possible’. To that end, we intend to propose a new 

conceptualization of concepts by dividing each concept’s 

set of attributes into two groups: key attributes and 

auxiliary ones. During the classification of an incomplete 

individual and if the ‘unknown’ attribute is an auxiliary 

one, then the current concept can be marked ‘sure’. For 

example, if Tom has obtained a medical diploma, then 

even though we may lack information about his age, his 

address or even his last name, we can be sure that he is a 

doctor. Therefore, in order to mark the concept Doctor as 

‘sure’, it is not necessary to have known values for all 

attributes.   
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