
 Informatica 40 (2016) 257–274 257

PrefWS3: Web Services Selection System Based on Semantics and User

Preferences

Rohallah Benaboud

Department of Mathematics and Computer Science, University of Oum El Bouaghi, Algeria

LIRE Laboratory, University of Constantine 2 - Abdelhamid Mehri, Constantine, Algeria

E-mail: r_benaboud@yahoo.fr

Ramdane Maamri and Zaidi Sahnoun

LIRE Laboratory, University of Constantine 2 - Abdelhamid Mehri, Constantine, Algeria

E-mail: rmaamri@yahoo.fr, sahnounz@yahoo.fr

Keywords: semantic web service discovery, domain ontology, OWL-S, QoS, user preferences, reputation

Received: January 21, 2016

With the growing number of web services on the Web, many approaches have been proposed to help

users discover and select the desired services. Nevertheless, finding the best service that meets the user

needs and preferences is still a problem. In this article, we introduce a user preferences based semantic

web services discovery and selection system (PrefWS3). PrefWS3 is considered to be a user-centric

system which helps users in formulating their requirements and preferences. This system involves

semantic enhancement of both request and web services and provides an efficient semantic-based

matching mechanism, which calculates the semantic similarity between the request and the web service.

Furthermore, PrefWS3 includes a QoS-aware process and provides a reputation mechanism that

enables users to evaluate the credibility of the web services they use. In this article, we also present the

results of a comparison of the PrefWS3 and some other published approaches to evaluate its

effectiveness.

Povzetek: Prispevek obravnava izbiro spletnih storitev na osnovi semantike in preferenc uporabnika.

1 Introduction
Web services have emerged as a key technology for

implementing Service Oriented Architectures (SOA),

aiming at providing interoperability among

heterogeneous systems and integrating inter-organization

applications [1]. Web services are designed to be selected

via discovery mechanisms. Web Service discovery

mechanisms include a series of registries, indexes,

catalogues, agent-based and Peer to Peer solutions. The

most dominating among them is the Universal

Description Discovery and Integration (UDDI) [2] which

is essentially based on keywords search on WSDL

descriptions of Web services. Simple keyword matching

does not capture the underlying semantics of web

services [3]. As a result, only the services which have

same syntactic description with the user request may be

considered for selection. For example, when searching

services with the keyword ‘vehicle’, the ones whose

descriptions contain the word ‘car’ will not be returned.

Thus, the discovery process is also constrained by its

dependency up on human intervention in choosing the

appropriate service based on its semantics [4].

In order to solve the above-mentioned problem, a

variety of conceptual models have been proposed over

these past years to add semantics to Web Services

descriptions. These include WSDL-S [5], WSMO [6],

and OWL-S [7]. These so-called Semantic Web services

(SWS) are Web services that are annotated with semantic

descriptions. This semantic is made through ontologies;

one of the important technologies of the Semantic Web.

The discovery of SWS is mainly based on their

functional aspects (Inputs, Outputs, Pre-conditions and

effects). However, due to the increasing availability of

Web services that offer similar functionalities, other

parameters have to be considered during the discovery

process, especially user preferences that are expressed in

term of constraints on quality of service (QoS), i.e.,

execution time, cost, reliability, availability, etc.

Several approaches of Web Services discovery have

been proposed in the literature; however, finding the best

and the right web service that meets user needs and

preferences is still a problem. This is due to a number of

challenges. Some of them include [4] [8]:

- Descriptions of the vast majority of already existing

web services are specified using WSDL and do not

have associated semantics.

- From the user’s point of view, expressing a request

can be a disturbing burden, because he may not have

the required expertise or skills.

- Searching is a simple keyword based search; as a

consequence, matching does not capture the

underlying semantics of web services.

- Accurate service matchmaking for service discovery

can be computationally very expensive.

- Dishonest service provider may advertise fake QoS.

In this paper, we present a complete system for web

service discovery and selection named PrefWS3, which

is able to cope with most of the challenges mentioned

mailto:rmaamri@yahoo.fr

258 Informatica 40 (2016) 257–274 R. Benaboud et al.

above. The proposed system covers the entire spectrum

of tasks from service request to service invocation, and

also after service invocation.

Figure 1: The key steps of PrefWS3.

Figure 1 illustrates the key steps of PrefWS3: The

first step involves semantic and QoS enhancing of the

request and web service description. The second step

deals with the functional parameters based matching of

the request against the advertisement services. In the

third step, we perform a QoS based matching. In the last

step, the user feedback is taken into account for the

selection of the best web services. These steps make

PrefWS3 a cascading filtering mechanism that finds the

best web services from a set of raw web services.
Several approaches have discussed separately the

previous four steps, but not all at the same approach. In

addition, these approaches differ in the way of each step

is implemented. PrefWS3 aims to provide a more “user-

centric” system simplifying the service discovery using

semantics while satisfying QoS requirements, and to free

users from time consuming human computer interactions

and Web search. To show the effectiveness of PrefWS3,

we compare it with other approaches. The contributions

of this paper regarding the different steps can be

summarized as follows:

1) Request and web service descriptions enhancing:

- Enhancement of OWL-S profile with QoS

information.

- Provide users a way to specify their

requirements and preferences expressively and

flexibly.

2) Functional parameters based matching: Presenting an

efficient matchmaking mechanism that captures semantic

similarity between requests and services in a more

efficient way with less time.

3) QoS-aware service selection:

- Provide a QoS based filtering mechanism that

aims to filter out services that do not meet the

service user preferences.

- Introduce a QoS monitoring mechanism that

aims to measure the QoS values in order to

verify whether the measured values comply

with QoS values published by the Web service

provider.

4) Reputation based ranking: Provide a mechanism that

gives confidence to a user when selecting a web service.

In a previous paper [9], we have addressed some

aspects of the PrefWS3 system. The present paper

extends the last one by introducing new important

mechanisms such as WSLD2OWLS translating, QoS

weights calculating, and QoS monitoring mechanisms.

Furthermore, the ontology-based OWL-S extension, the

QoS based services filtering and the reputation

mechanisms, which are previously addressed, are

extended in order to make the service selection process

more accurate and practical.

The rest of the paper is organized as follows: We

present the related works in Section 2. Section 3 gives

an overview of the proposed system, and section 4

provides a detailed discussion on request and web

services descriptions enhancing. The detailed description

of functional parameters based matching is presented in

Section 5. Section 6 and 7 include a discussion on QoS

based matching and Reputation based ranking

respectively. The evaluation of the proposed system is

presented in Section 8. Finally, a conclusion and future

work are presented in Section 9.

2 Related works
Researches in Web services discovery have been

necessary since the number of available services on

internet has increased and the user gets tired to find

desired service. In this section, we present and analyze

the related works in order to comprehend the benefits

that may be obtained and to put our contributions in the

context of service web discovery.

Most current approaches for web service discovery

depend on the measurement of the similarity degrees

between service request and service advertisement. The

work in [10] presents a matchmaking algorithm which

compares input and output concepts of the user request to

the service description and defines four levels of

matching: Exact, Plug in, Subsumes, and Fail. However,

the use of such discrete scale classification of matching is

not sufficient to best rank services. Some of the relevant

services might be eliminated due to not fitting those

discrete scales. PrefWS3 calculates the total similarity

score of the web services according to their relevancy to

the user request. OWL-S matchmakers are the

mainstream in contemporary SWS matchmakers [11].

iSeM [12] performs structural matching between the

signatures of a given Web service and request using the

logic-based input/output concept matching, the text

similarity-based approach, the ontology-structure-based

approach, and the SVM-based approach and, after that,

adjusts its aggregation and ranking parameters using

machine learning. iMatcher2 [13] combines the SPARQL

query language for logical referencing and the syntactic

similarity measure to calculates the degree of semantic

matching between two OWL-S service profiles. OWLS-

MX3 [14] takes into account the shortest distance and the

common parent classes between the concepts in an

Web Service

Descriptions

Request and Web Service Descriptions Enhancing

Functional Parameters Based Matching

QoS Based Matching

Reputation Based Ranking

Best Web Services

OWL Ontologies

& Feedbacks

WS Request

and

PrefWS3: Web Services Selection System... Informatica 40 (2016) 257–274 259

ontology to compute the semantic similarity between

input/output concepts of service and requests.

The work in [15] introduces a Semantic Advanced

Matchmaker (SAM), which provides ranking and scoring

based on concept similarity. The authors created their

own similarity distance ontologies to find the distance

between objects. This ontology is supposed to contain

proper similarity scores through the assignment of

concept-similarity ratings of all the concepts in the

ontology by a similarity ranking mechanism. They

perform the matchmaking considering the input/output

interface of services. In [16], the authors present a

semantic matching approach for discovering semantic

web services through a broker-based semantic agent

(BSA). The BSA performs semantic matching according

to the concepts meanings, the concepts similarities, and

distance of concept relations. The semantic distance

calculation is based on subsumption-based similarity and

hasSynonym, hasIsa relationships. Against the two latter

works, PrefWS3 don’t use only the subsumption

relationships between concepts to calculate their

similarity but it also takes into account common

properties between them. Additionally, the semantic

distance between ontology concepts is not

necessarily determined according to the distance between

concepts. Two concepts that are directly attached

may be semantically very different. This case may take

place when a concept extends another one by

introducing several new properties. In the paper [17], the

authors present the application of Case-based Reasoning

(CBR) to the problem of service discovery and selection

by introducing a case representation, learning heuristics

and different similarity functions. The proposed approach

combines notions of CBR with the use of WordNet as

lightweight semantic basis. The major disadvantage of

CBR is that users might rely on previous experience

without validating it in the new situation [18]. This is

clearly a problem in changing web services

functionalities where past descriptions may not reflect

current descriptions. In addition, the system requires a

large memory space to store all the previous cases in the

form of problem-solution pairs. Semantic web service

technology is already adopted in several web based

applications and solutions, the authors of [19] propose an

intelligent system in order to facilitate semantic

discovery and interoperability of Web Educational

Services that manage and deliver Web media content.

Unlike the aforementioned matchmakers, the

matchmaking mechanism of PrefWS3 takes into account

the role of concepts in the request and the web service,

i.e, concepts are inputs or outputs, to calculate the degree

of similarity between them. We think that an output in

the request should not be considered as similar to a more

generic output in the advertised service, and an input in

the advertised service should not be considered as similar

to a more generic input in the request.

Since there are many functionally similar Web

Services available in the Web, it is an absolute

requirement to distinguish them using a set of non-

functional criteria such as Quality of Service (QoS). The

work in [20] presents a QoS-based model for web service

discovery by extending the UDDI’s data structure types

in order to enhance UDDI model with QoS information.

However service discovery and selection are still done by

human consumer. Furthermore, this approach is

impractical with a huge number of Web services

available for selection. The authors of [21] propose a

QoS-based web service selection system that handles

QoS requests with both exact values and fuzzy values,

return two categories of matching offers: super-exact and

partial matches. In [22], users’ preferences are defined by

a lexical ordering in accordance with their perceived

importance. They presented an algorithm to compare

web services based on their qualities (QoS). According to

the proposed algorithm, a web service WS1 is considered

better than a web service WS2 if the first QoS attribute

that distinguishes between WS1 and WS2 ranks WS1

higher than WS2. This algorithm is simple, but if the user

indicates that tow preferences are equally important, the

algorithm will take into account only the first preference

in the lexical ordering and ignores the second preference.

In our system, the use of the weighted sum method

allows to take into account all preferences each with its

importance degrees. The authors of [23] present a web

service selection framework, which takes into account

implicit preferences that are inferred from information

related to context and profile of the user. Similarities

between different attributes of service request and service

are captured thanks to fuzzy-set-based techniques. It is

argued that augmenting the user’s query by preferences

depending on their context and their profile allows for

highly improving the result’s quality. However, the

proposed framework requires too much information and

a large number of fuzzy rules to infer implicit

preferences in each specific domain. Moreover, the

proposed framework doesn’t take into account the

importance of each QoS.

A major problem in using QoS for service discovery

is the specification and storage of the QoS information.

Most of QoS-aware discovery mechanisms, described

above, ignore this problem. In our work, we propose an

ontology-based OWL-S extension to add QoS to OWL-S

descriptions. Furthermore, PrefWS3 proposes a QoS-

based filtering mechanism which filters out services that

do not meet the user preferences described as QoS

constraints. This filtering mechanism takes into account

the degree of confidence that the user has on the

specified constraints.

Some approaches already exist about involving the

user in the process of service discovery. Those

approaches are variants of reputation systems in which

the users rate the service providers and share these

ratings with other users. The work in [20] presents a

reputation-enhanced model that contains a reputation

manager which assigns reputation scores to the services

based on user feedback regarding their performance.

Then, a discovery agent uses the reputation scores for

service matching, ranking and selection. The authors of

[24] introduce a Web service selection mechanism based

on user ratings and collaborative filtering. Services are

ranked based on similarity to the user’s ratings from the

collected feedback database from the users. The

260 Informatica 40 (2016) 257–274 R. Benaboud et al.

similarity mechanism is calculated based on Pearson

correlation coefficient. A Bayesian network trust and

reputation model for web services is introduced in [25],

which considers several factors when assessing web

services’ trust: direct opinion from the truster, user rating

(subjective view) and QoS monitoring information

(objective view). In [26], the authors present a QoS-

based semantic web service selection and ranking

solution with the application of a trust and reputation

management method, which detects and deals with false

ratings by dishonest providers and users.

In most of the aforementioned reputation

mechanisms, the satisfaction criterion of the rater is

unknown since the service user gives one rating score for

all QoS of the invoked service. Without knowing the

intention of the rater, it is almost impossible to make a

given rating meaningful. In the reputation mechanism of

PrefWS3, the service user gives a rate score for each QoS

attribute of the used Web services. Furthermore,

PrefWS3 gives more importance to recent ratings.

3 PrefWS3 overview
PrefWS3 aims to provide a complete system for web

service selection that simplifies the service discovery

using semantics while satisfying the user preferences.

PrefWS3 covers the entire discovery process through

several components that take charge of the request and

the web services descriptions process, functional based

matchmaking, filtering and matching of quality of

service parameters, and reputation and rating mechanism.

There are four types of data needs to be collected in

PrefWS3 to deal with the service request: Web service

description in both WSDL or OWL-S files, public open

OWL ontologies on the Internet, QoS data, and ratings.

Figure 2 illustrates the main components of the

PrefWS3 system, which are described as follows:

Interface Management: This module manages the

different interactions with the system users. Depending

on the nature of the user and type of his request, the

required scenario occurs. These requests include the

following parts:

- Requests from service providers in order to register

their web services.

- Requests from service consumers, which can be

either web services lookup requests or service

ratings.

WSDL to OWL-S translating: A large number of service

providers use WSDL based syntactic description to

describe their services. Therefore in our system, we use a

translator to translate WSDL files into OWL-S files and

provide semantically enriched description. The

translating mechanism uses domain ontologies for

mapping complex types, inputs, and outputs of WSDL

into OWL ontology concepts.

OWL-S Extending with QoS Information: We use OWL-

S service profile as a model for semantic annotation of

Web service descriptions. However, OWL-S mainly

focuses on describing functional aspects of a Web

service and does not describe QoS aspects. After the

translation from WSDL files to OWL-S files, the OWL-S

profile must be enhanced with QoS information to enable

selecting the best services that meet user preferences.

OWL-S repository: This component is responsible for

storing the semantic service descriptions as OWL-S files,

which could be used for service discovery process.

QoS Weight Calculation: Service consumers have

different preferences. For example, a service consumer

may want a Web service with lower cost while for

another one; the execution time could be his most

important parameter. For this raison, we propose that the

service consumer may specify that a QoS attribute is

more important than another one. Indeed, a weight is

given for each QoS attribute. Weights are in [0, 1] where

higher weights represent greater importance. Because

weights are an important factor for determining the

overall quality of a Web service, we calculate the

weights for each QoS attribute according to the service

consumer QoS preferences. However, distributing the

weight of many QoS attributes overburdens the service

consumer. Weights calculation can be consider as a

multiple decision criteria problem and therefore, we can

apply an Analytic Hierarchy Process (AHP) which

becomes one of the best known and most widely used

multi-criteria decision making methods [27]. By

applying this method, the system can easily calculate the

weights because it requires only a simple evaluation

between two QoS attributes.

Request Generating: In PrefWS3, a request is described

in the same manner as a service to facilitate the matching

of their descriptions. Request input and output

parameters are assumed to be mapped to concepts from

domain ontology. Therefore, when a service consumer

wants to insert his request, an Ontology-Guided Interface

is offered and the service consumer must select the

desired terms he wants to use in his request from the list

of terms provided in a pop-up by the interface.

Domain Ontologies: Service and request are described

using relevant ontology concepts. Different domains may

need different ontological representations. Therefore, to

avoid the semantic heterogeneity due to the use of

different concepts, we use a common ontological basis

which contains comprehensive ontologies of different

domains of Web services development. Input and output

parameters of both request and service are defined using

concepts from the same domain ontology.

OWL Public Ontologies: Several websites provide open

public ontologies such as DAML Ontology Library1,

which contains more than 280 ontologies written in

OWL or DAML+OIL. OWL public ontologies are used

to create new ontologies or update already existing one in

the domain ontologies repository. These public

ontologies will be consulted periodically to develop or

enrich the domain ontologies.

1 www.daml.org/ontologies/

PrefWS3: Web Services Selection System... Informatica 40 (2016) 257–274 261

Domain Ontologies Management: This component takes

charge of maintaining and updating domain ontologies

with additional entities. The main challenges in updating

domain ontologies are: 1) finding new information

(concepts, relationships…), and 2) incorporating the new

information in ontologies.

Functional Matching: The web service input and output

parameters contain the underlying functional knowledge

that is extracted for improving functional service

discovery. The main concept of service discovery is

semantic-based matching between requests and services.

It establishes a mapping between the input of the request

and the input of the service and a mapping between the

output of the request and the output of the service.

QoS Based Filtering: Sometimes, the service consumer

indicates that he refuses a Web service with a QoS

having a value below or above a threshold specified in

his query. QoS based filtering aims to filter out services

that do not meet the service consumer preferences

described as QoS constraints.

QoS Score Computing: The role of the QoS score

computing step is to find the degree of quality of the

candidate services after completing the functional

matching through their QoS metric information and user

preferences.

QoS Monitoring: The QoS monitoring mechanism aims

to monitor and measure the QoS values of services in

order to verify whether the measured values are in

compliance with QoS values published by the Web

service provider. QoS monitoring becomes the

determining factors for customers to whether continue

using the service or not [28].

Ratings Managing: Once the web service is selected, the

service user should provide a rating score to show his

satisfaction level of the invoked web service. The

reputation mechanism enables service consumers to

evaluate the credibility of web services they use, and

takes into account the satisfaction criteria of each service

consumer.

Ratings Database: User ratings are stored in an RDF

triple store and kept in Ratings database.

Reputation Computing: The reputation of a service is a

collective measure of the opinion of a community of

users regarding their experience with the service [29]. It

Figure 2. PrefWS3 architecture.

Ratings

 Suitable Candidate
Services

 Eligible Candidate
Services

 Raw Candidate
Services

QoS

Monitoring

Binding

Interface Management

Consumer Interface Provider Interface

OWL-S
Description

OWL-S Extending

with QoS Info

WSDL
Description

OWL-S
Description

OWL-S

Repository

Enhanced OWL-S
Description

QoS Weight

Calculation

Preferences

Ratings

DataBase

Request

Generating

QoS Weights

Requirements

 Internet
OWL Public

Ontologies

Domain Ontologies

Domain Ontologies

Management

Enhanced
Request
Description

QoS Based Filtering

QoS Score Computing

Reputation Computing
 Best Candidate Services

Ratings Managing

Web Service Selection Process

WSDL2OWLS

Translating

Functional Matching

262 Informatica 40 (2016) 257–274 R. Benaboud et al.

is computed as an aggregation of users’ feedbacks and

kept in Ratings Database. Web services are ranked using

their reputation and as a final step, best ranked candidate

services are shown to the service consumer.

4 Web service and request model
Typically, Web services are described using functional

and non-functional properties. Functional properties

represent the description of the service functionalities. In

our work, functional properties contain Service Name,

Textual description, a set of Inputs and a set of Outputs.

Non-functional properties represent the description of the

service characteristics (e.g. QoS). Generally, QoS may

cover a lot of attributes hosted by different roles. In this

paper, we adopt three key attributes that the service

customers mostly care about when they use a Web

service. These are: Execution time, Execution price, and

Reliability. Note that other QoS attributes can be applied

to our system without fundamental modification.

A request signifies a service demand. A request

description includes functional and non-functional

requirements. The former describes the functional

characteristic of the service demand, such as inputs and

outputs. The latter mainly focuses on the customer’s

preferences, namely quality of service (QoS). In our

work, a service consumer doesn’t have to give the value

of each desired QoS attribute; he should get instead the

means to specify that a QoS attribute is more important

than another one.

4.1 Translation from WSDL to OWL-S

descriptions

The WSLD2OWLS translating component of PrefWS3

system translates WSDL files of the already existing

Web Services into a semantic definition using OWL-S.

This translation aims to add semantic annotations to Web

Service specifications. In PrefWS3 system, we use only

the OWL-S service profile in the discovery mechanism,

so that the translator is responsible for translating WSDL

files into OWL-S service profile files. Much research

work has been done in mapping WSDL to OWL-S [30]

[31] [32], but it is important to note here that until

nowadays, the mapping process is not functioning fully

automatically. The main raison is that the OWL-S

description contains more information than the WSDL

description. WSDL description provides only input and

output information, while OWL-S description can

provide inputs, outputs, preconditions and effects.

Therefore this additional information must be set

manually. In our work, we are limited to use only service

name, textual description, inputs and outputs to

functionally describe a web service. Because that

information are already provided by WSDL description,

the translator process is fully automatic.

The benefit of describing Web services in WSDL

format is that WSDL is machine-readable, namely it can

be parsed automatically. WSDL description contains

service name, service textual description, types, inputs,

outputs and binding. Based on the mapping process

presented in [31], we can summarize our translator

mechanism, as depicted in Figure 3, as follows:

- Service name in WSDL is translated into service

name in OWL-S service profile.

- Service textual description in WSDL is translated into

Service textual description in OWL-S service profile.

- Primitive XSD types in WSDL are translated into

XSD simple types.

- Complex XSD types in WSDL are translated into

OWL ontology concepts.

- Inputs and outputs of WSDL are mapping to OWL

ontology concepts.

4.2 Embedding QoS properties in the

OWL-S service profile

PrefWS3 system uses OWL-S service profile as a model

for semantic annotation of Web service descriptions.

However, OWL-S mainly focuses on describing

functional aspects of a Web service and does not describe

QoS aspects. Many approaches based on ontologies have

been proposed for QoS [33] [34]. However, existing

approaches are difficult for users to define their QoS

based preferences. They usually assume that users could

formulate their preferences easily and are accurately

using the QoS languages.

Based on our previous work [9], we propose an

ontology based OWL-S extension to add non-functional

description, referred to as QoS, to Web service

description. The new service profile model is depicted in

Figure 4. In OWL-S service profile we use a set of

ServiceParameter which has a name

(serviceParameterName) and a value (sParameter). For

the connection of OWL-S and QoS ontology, the

QoSProperty is a subclass of OWL-S ServiceParameter,

and QoSParameterName and qosParameter are

subproperties of OWL-S ServiceParmaerterName and

sParameter property respectively. This method is open to

apply any QoS ontologies.

Each QoS property (QoSProperty) is defined by a

name (qosParameterName) as a "String" and a set of

characteristics (QoSCharacterisitic) that we describe as

follows:

Figure 3: Translation from WSDL to OWL-S descriptions.

OWL-S Service Profile

OWL Ontology Concepts

Types

Simple XSD types

Text Description

Parameters

Service Name

Output

Functionality Description

Input

WSDL Description

Complex XSD types

Types

Primitive XSD types

Text Description

Service

Service Name

Output

Operations

Input

QoS information

(OWL-S profile extension)
Bindings

PrefWS3: Web Services Selection System... Informatica 40 (2016) 257–274 263

- Value: Represents the value of a QoS property. From

the provider viewpoint, this value represents the one

of a QoS attribute of the provided service; but from

the consumer viewpoint, it represents a threshold QoS

value.

- Monotony: This feature is used to distinguish between

two types of QoS:

 Quality with increasing monotony (e.g,

execution time). In this case, the QoS property

value indicated by the service user represents

the minimum value to be taken into account.

 Quality with decreasing monotony (e.g,

execution price."). In this case, the QoS property

value indicated by the service user represents

the maximum value to be taken into account.

- Unit: Each value of the QoS property is provided

together with a measuring unit (e.g, Dollars, Seconds)

- Dynamism: We distinguish two different types of

QoS: The static and dynamic. A static QoS is a

quality whose value is known before the Web service

execution (eg, the execution price). Dynamic QoS is a

quality whose value is known only after the Web

service execution (eg, execution time).

- QoSWeight: As described in previous section, the

QoS weight allows specifying that a QoS property is

more important than another one.

- QoSCoeff: This coefficient represents the degree of

confidence that a customer has on his preference. The

use of this coefficient will be detailed in subsection

6.1.

The proposed OWL-S extension is particularly

useful for the different actors involved in the publication,

the discovery and the invocation of web services, mainly

service provider and service consumer (or user). Service

provider can enter the services by filling properties

values of the different service qualities (ProviderQoS).

To facilitate this task, PrefWS3 displays the definition

and comments on the quality property whose value must

be entered. The service consumer can query the OWL-S

extension ontology to find services that best meet their

QoS requirements (RequesterQoS).

4.3 QoS weights calculating using AHP

method

To help the service user on determining the weights

according to their QoS preferences easily, the “QoS

weight calculation” component of PrefWS3 uses a

mechanism based on an Analytic Hierarchy Process

(AHP) method which allows the calculation of weights

only by a simple evaluation between two QoS attributes.

The Analytic Hierarchy Process, presented in [35], is

a multi-criteria decision-making approach which can be

used to solve complex decision problems. Basically, this

approach involves the construction of a pair-wise

comparison matrix where each element is rated against

every other element by means of predefined scores (from

1 to 9) indicating their relative importance as shown in

Table 1. These comparisons are used to obtain the

weights of importance of the decision criteria. If the

comparisons are not perfectly consistent, then it provides

a mechanism for improving consistency.

In PrefWS3 system, the main steps for using the AHP

method can be described as follows:

1. In the first step, we identify the criteria to be used

by the method. As an illustration, we choose three

QoS attributes as criteria, which are: execution

time, execution price and availability.

2. In the second step, we establish the pairwise matrix

based on service user preferences. By applying the

AHP method, since we have three QoS attributes, a

pairwise comparison matrix, containing nine

elements, has been constructed. Suppose that the

matrix, depicted in Table 2, represents the

corresponding judgments with the pairwise

comparisons.

Figure. 4: OWL-S extension to support QoS.

presents

serviceParameterName

serviceName

textDescription

Service Service Profile

&xsd;#string

&xsd;#string

Input

Output

&xsd;#string ServiceParameter

&xsd;#string

OWL;# Thing

g

Value Monotony Unit

hasOutput

sParameter

qosParameter
qosParameterName

hasValue
hasMonotony hasUnit

QoSCharacteristic

hasInput

QoSProperty

OWL-S Service Profile

QoS Ontology

 subClassOf

 hasProperty

RequesterQoS
ProviderQoS

QoSWeight QoSCoeff

hasQoSWeight hasQoSCoeff

Dynamism

hasDynamism

264 Informatica 40 (2016) 257–274 R. Benaboud et al.

Scales Degree of

preferences

Explanation

1 Equally Two activities contribute

equally to the objective

3 Moderately Experience and

judgment slightly favor

one over the another

5 Strongly

Experience and

judgment strongly or

essentially favor one

activity over another

7 Very strongly

An activity is strongly

favored over another and

its dominance is shown

in practice

9 Extremely

The dominance of one

over another is affirmed

on the highest possible

order

2, 4,

6, 8

Intermediate values

Used to represent

compromises between

the preferences in

weights 1, 3, 5, 7 and 9

Recip

rocals

Opposites Used for inverse

comparisons

Table 1: Pairwise comparison scale for AHP preferences. [35]

QoS

attribute

Execution

time

Availability Execution

price

Execution

time
1 9 3

Availability 1/9 1 1/5

Execution

price

1/3 5 1

Table 2: Example of a pairwise matrix.

3. In the third step, we calculate the weight of

importance of each QoS attribute based on the

pairwise comparison matrix and many

normalization operations. The weighted values are

calculated by Algorithm 1.

4. In the fourth step, we verify the consistency of the

service user judgments. In the AHP method,

judgments are considered to be adequately

consistent if the corresponding consistency ratio

(CR) is less than 0.1; otherwise it is necessary to

review the subjective judgments. The CR is

calculated as follows. First the consistency index

(CI) needs to be calculated. This is done by

algorithm 2. Next the consistency ratio CR is

obtained by dividing the CI value by the Random

index (RI) as given in Table 4 where n is the

number of criteria.

When applying the algorithm on the above example of

pairwise comparison matrix, we get the weights

presented in Table 3.

Algorithm 1: Weights Calculation

Input: C: matrix n  n

// pairwise comparison matrix obtained in step 2.

Output: W: vector with size n // weights vector

Variables: P: matrix n  n initialized with 0 for each

element.

S, W: vectors with size n initialized with 0 for each

element.

Begin

1: for j  1 to n do

 for i  1 to n do

 S[j]  S[j] + C[i][j];

 2: for j  1 to n do

 for i  1 to n do

 P[i][j]  C[i][j]/ S[j];

3: for i  1 to n do

 for j  1 to n do

 W[i]  W[i] + P[i][j];

4: for i  1 to n do

 W[i]  W[i]/n;

End

QoS

attribute

Execution

time

Availability Execution

price

Weight 0.67 0.06 0.27

Table 3: Example of weight scores.

n 1 2 3 4 5 6 7 8 9

R I 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

When the algorithm 2 is applied to the previous

judgment matrix, it can be verified that the following are

derived: max = 3.056, CI = 0.028, and CR = 0.048. The

CR value is less than 0.10, so weights are accepted.

Table 4: RI values for different values of n. [35]

PrefWS3: Web Services Selection System... Informatica 40 (2016) 257–274 265

5 Service functional matching

The main concept of service functional matching is

semantic matching between request and web services,

namely, inputs and outputs of the request are both

matched with the ones of the web service. We consider

that all inputs and outputs refer to concepts of domain

ontology. In fact, matching inputs (outputs) of the

request and the web service is nothing other than the

matching of concepts associated to inputs (outputs). To

calculate the similarity of two concepts A and B, we take

into account two parameters. The first is the relationship

between the two concepts in the domain ontology. The

second is the role of concepts in the request and the web

service, i.e, concepts are inputs or outputs.

Based on the relationship between the two concepts

A and B in the domain ontology, we distinguish the

following scenarios:

 A = B: The concepts A and B are the same or they are

declared as equivalent classes.

 A < B: The concept A is a subclass of the concept B

directly or indirectly.

 B < A: The concept B is a subclass of the concept A

directly or indirectly.

 A <> B: The concept A does not have a parent/child

relationship with the concept B, but both

concepts have a parent concept C in

common directly or indirectly.

 AB : Otherwise.

Based on the role of concepts in both request and web

service, we think that an output in the request should not

be considered as similar to a more generic output in the

advertised service, while a request input could be

considered as similar to a more generic advertised input.

For example, if a user requests a web service that gives

as an output the list of “Algerian universities”, then the

web service that gives as an output the list of all

universities, cannot be considered as a suitable service

because; it can return a set of “European universities”

Cases Concept A Concept B

The role of concepts

in request/web

service

Relationship

between

Concepts in

Domain

Ontology

ConceptSim(A, B)

 1 (line 1) Location Location /
Location =

Location
1

2 (line 3) PhdStudent Person

PhdStudent

R1.Inputs and

Person  S1.Inputs

PhdStudent <

Person
1

3 (line 4) AlgUniversity University

AlgUniversity 

R1.Outputs and

University 

S1.Outputs

AlgUniversity

< University
0,8

4 (line 7) University AlgUniversity

University 

R2.Outputs and

AlgUniversity 

S2.Outputs

AlgUniversity

< University
1

5 (line 8) Person PhdStudent

Person  R2.Inputs

and PhdStudent 

S2.Inputs

PhdStudent <

Person
0,6

6 (line 10) PhdStudent Employer /
PhdStudent <>

Employer
0,5

7 (line 11) Person University /
Person 

University
0

Table 5: Example of conceptSim calculation.

Algorithm 2: CI Calculation

Inputs: C: matrix n  n // pairwise comparison matrix

obtained in step 2.

W: vector with size n // weights vector obtained by

Algorithm 1

Outputs: CI: float // Consistency Index

Variables: P: matrix n  n initialized with 0 for each

element.

 S: vector with size n initialized with 0 for each element.

 max: float.

Begin

1: for j  1 to n do

 for i  1 to n do

 P[i][j]  C[i][j]*W[j];

2: for i  1 to n do

 for j  1 to n do

 S[i]  S[i] + P[i][j];

3: for i  1 to n do

 S[i]  S[i]/W[i];

4: max  Max(S[1], S[2],….., S[n]);

5: CI  (max – n)/(n – 1);

End

266 Informatica 40 (2016) 257–274 R. Benaboud et al.

that do not interest the user. We think also that an input

in the advertised service should not be considered as

similar to a more generic input in the request, while an

output in the advertised service could be considered as

such. For example, if a user requests a web service that

takes as an input the ID of a student, then the Web

service that takes as an input only the ID of a PHD

student cannot be considered as a suitable service,

because it ignores a much of the request’s inputs.

To calculate the semantic similarity between two

concepts A and B, we use the function ConceptSim(A,

B). Our definition of this function is based on the

constraints described above and on the information

theoretic based measure presented in [36]. Semantic

similarity is defined as the amount of common

information that is shared between the concepts.

Algorithm 3 gives the exact definition of the function

ConceptSim(A, B), where:

 The concept A annotates an input/output of the

request, while the concept B annotates an

input/output of the Web Service.

 All inputs and outputs refer to concepts of the domain

ontology, an example portion of which is shown in

Figure 5.

Algorithm 3 : ConceptSim(A, B)

Begin

1: if A = B then ConceptSim(A, B) = 1

2: else if A < B then

3: if A, B are Inputs then ConceptSim(A,B)=

1

4: else if A, B are Outputs then

 ConceptSim(A, B) =
Size(prop(B))

Size(prop(A))
 endif

5: endif

6: else if B < A then

7: if A, B are Outputs then ConceptSim(A,B) =

1

8: else if A, B are Inputs then

 ConceptSim (A, B) =
Size(prop(A))

Size(prop(B))
 endif

9: endif

10: else if A <> B then

 ConceptSim(A, B) =
Size(prop(A)prop(B))

Size(prop(A)prop(B))

 11: else ConceptSim (A, B) = 0 endif

12: endif

13: endif

14: endif

13: return ConceptSim (A, B).

End

 The function prop(C) denotes the set of properties of

the concept C.

 The function Size(S) denotes the number

of elements of the set S.

 If a concept A is a subclass of a concept B (A < B),

then all properties of B are added to the properties of

A (inheritance property).

Example: For illustration, let us take two requests (R1,

R2) and two web services (S1, S2). All inputs and

outputs refer to concepts of the domain ontology shown

in Figure 5.

 R1: Inputs = { PhdStudent}, and

Outputs = { Location, AlgUniversity }

 R2: Inputs = { GeographicArea, Person }, and

Outputs = { University }

 S1: Inputs = { Person }, and

Outputs = { Location, University }

 S2 : Inputs = { Location, PhStudent }, and

Outputs = { AlgUniversity}

The different cases can be illustrated in Table 5.

After describing the semantic similarity between

concepts, we give now the algorithm of inputs matching

(algorithm 4). Where R.Inputs and S.Inputs denote the

set of inputs in the request R and the set of inputs in the

service S respectively, Card(E) denotes the cardinality of

the set E, Sort(A) allow to sort the elements of the array

A in descending order. In lines 1, 2, 3 and 4, the

algorithm matches each request input with all Web

service inputs, and keeps the best mapping for each

request input. In lines 9, 10, 11 and 12, it distinguishes

between the situation when the number of request inputs

is less than the number of service inputs and when the

inverse situation is presented. In the first case, we have a

miss of information; therefore InputsSim value is

decreased (line 10).

The outputs similarity given by

OutputsSim(R.Outputs, S.Outputs) function is also

calculated, by algorithm 5, in the same way as inputs

similarity. But when the number of service outputs is less

than the number of request outputs, the value of

OutputsSim is decreased. Therefore we inverse line 10

Figure 5: Part of simple Ontology.

hasLongitude

hasLatitude

hasGeoName hasCountryName

hasThesisID

hasEmployerID hasStudentID

hasAdress

hasLastName

hasFirstName

hasAlgPostcode

hasName

hasUnivID

University

UnivPostcode

UnivCourse

UnivID

UnivName

AlgUniversity AlgPostcode

Person Adress

FirstName

LastName

Employer Student EmployerID StudentID

PhdStudent ThesisID

GeographicArea CountryName GeoName

Location

Latitude

Longitude

Altitude

hasAltitude

 subClassOf

 hasProperty

https://en.wikipedia.org/wiki/Element_(mathematics)

PrefWS3: Web Services Selection System... Informatica 40 (2016) 257–274 267

with 12 and perform changes in variable names in the

algorithm 3.

For example, let us calculate the Inputs and Outputs

similarity between Req1 and WSer1 shown previously.

InputsSim = ConceptSim(PhdStudent, Person) = 1.

OutputsSim=
ConceptSim(Location,Location)+ConceptSim(AlgUniversity,University)

2

 =
1+0,8

2
 = 0,9.

After calculating inputs and outputs similarity,

functional similarity can be calculated using Equation 1.

Where weights w1 and w2 are real values between 0 and

1 and must sum to 1; they indicate the degree of

confidence that the service consumer has in the input

similarity and output similarity. By default, w1 and w2

are set to 0.5.

FunctionalSim(R, S) = w1*InputsSim(R.Inputs, S.Inputs)

+ w2*OutputsSim(R.Outputs, S.Outputs) (1)

In the previous example, FunctionalSim(R1, S1)=

0.5*1 + 0.5*0.9= 0.95. This value indicates that R1 and

S1 are semantically very close.

Algorithm 4 : InputsSim(R.Inputs, S.Inputs)

InSim: array of float; // initialized with 0 for each

element

 Begin

1: foreach e1 in R.Inputs do

2: foreach e2 in S.Inputs do

3: InSimi = Max(InSimi , ConceptSim(e1, e2));

4: end for

5: i = i + 1;

6: end for

7: Sort(InSim);

8: m = Card(R.Inputs) – Card(S.Inputs);

9: if m<0 then

10: InputsSim =
∑ 𝐼𝑛𝑆𝑖𝑚𝑖

𝐶𝑎𝑟𝑑(𝑅.𝐼𝑛𝑝𝑢𝑡𝑠)
𝑗=1

𝐶𝑎𝑟𝑑(𝑅.𝐼𝑛𝑝𝑢𝑡𝑠)
/(|𝑚| + 1)

11: else

12: InputsSim =
∑ 𝐼𝑛𝑆𝑖𝑚𝑖

𝐶𝑎𝑟𝑑(𝑆.𝐼𝑛𝑝𝑢𝑡𝑠)
𝑗=1

𝐶𝑎𝑟𝑑(𝑆.𝐼𝑛𝑝𝑢𝑡𝑠)

13: end if

14: return InputsSim

End

6 The QoS-based matching phase

6.1 QoS based services filtering

Sometimes, the service user indicates that he refuses a

Web service with a QoS having a value below or above a

threshold specified in his query. For example, a service

consumer may want a service with an execution price not

exceeding 100 units. So, candidate services which are

over this threshold value will be eliminated.

This type of filtering is effective to meet user

preferences, but suppose for the previous query, the

discovery process has found a good Web service from

the functional point of view but offers execution price

equal to 101 units. This Web service will be ignored

although 1unit may not make a difference to the user. In

such case, we propose that when the user indicates a

threshold for a QoS attribute, it associates a confidence

coefficient "QoSCoeff". This coefficient represents the

degree of confidence that the user has on the specified

threshold. The value of this coefficient should be in the

range [0, 1]. The value 1 means that the filtering

algorithm must strictly observe the specified threshold.

The value 0 means that the filtering algorithm must

ignore this threshold. Therefore, our system uses

algorithm 6 as a QoS-based services filtering algorithm.

With this algorithm we can avoid the selection of web

services that does not meet the service consumer

preference.

Algorithm 6 takes as inputs a set of candidate web

services and a set of QoS based constraints, thresholds

(QoSConstraints.value) and confidence coefficient

(QoSConstraints.QoScoeff), then filter out unwanted

services taking into account that each QoS attribute can

be monotonically increased or decreased.

For each Web service from the candidate Web

services, we check the offered QoS properties to compare

it with user constraints.

Line 9: If the QoS property is a positive quality

(QoSCharacteristic.Monotony = "increase"), then

multiply the value of the threshold by the coefficient to

further decrease the threshold value.

For example, if the user indicates a threshold equal to 50

units for the execution time QoS property, with a

confidence coefficient equal to 0.7, then all Web services

with an execution time more than 50 * 0.7 = 35 units are

maintained. The others are filtered out.

Line 11: If the QoS property is a negative quality

(QoSCharacteristic.Monotony = "decrease"), then we

divide the value of the threshold by the coefficient to

further increase the threshold value.

For example, if the user indicates a threshold equal to

Algorithm 5 : OutputsSim(R.Outputs, S.Outputs)

OutSim: array of float; // initialized with 0 for each element

Begin

1: foreach e1 in R.Outputs do

2: foreach e2 in S.Outputs do

3: OutSimi = Max(OutSimi , ConceptSim(e1, e2));

4: end for

5: i = i + 1;

6: end for

7: Sort(OutSim);

8: m = Card(R.Outputs) – Card(S.Outputs);

9: if m<0 then

10: OutputsSim =
∑ 𝑂𝑢𝑡𝑆𝑖𝑚𝑖

𝐶𝑎𝑟𝑑(𝑆.𝑂𝑢𝑡𝑝𝑢𝑡𝑠)
𝑗=1

𝐶𝑎𝑟𝑑(𝑆.𝑂𝑢𝑡𝑝𝑢𝑡𝑠)

11: else

12: OutputsSim =
∑ 𝑂𝑢𝑡𝑆𝑖𝑚𝑖

𝐶𝑎𝑟𝑑(𝑅.𝑂𝑢𝑡𝑝𝑢𝑡𝑠)
𝑗=1

𝐶𝑎𝑟𝑑(𝑅.𝑂𝑢𝑡𝑝𝑢𝑡𝑠)
/(|𝑚| + 1)

13: end if

14: return OutputsSim

End

268 Informatica 40 (2016) 257–274 R. Benaboud et al.

100 units for the execution price QoS property, with a

confidence coefficient equal to 0.8, then all Web services

with an execution price less than 100/0.8 = 125 units are

maintained. The others are filtered out.

Algorithm 6: QoSServicesFiltering(CandidateServices,

QoSConstraints)

Begin

1: foreach service S in CandidateServices do

2: foreach QoSParameter in S do

3: Coeff := QoSConstraints.QoScoeff

4: Mon:= QoSCharacteristic.Monotony

5: SVal:= QoSCharacteristic.Value

6: RVal:= QoSConstraints.Value

7: if (Coeff < > 0) then

8: if (QoSParameter.name = QoSConstraints.name)

then
9: if (Mon = “increase”) and

 (SVal < (RVal  Coeff)) then

10: FilterOut (S) from CandidateServices.

11: elseif (Mon = “decrease”) and

 (SVal > RVal / Coeff)) then

12: FilterOut (S) from CandidateServices.

 endif.

 endif

 endfor

 endfor

End

6.2 QoS score computing

Each QoS value (qosValue) needs to be normalized to

have a value in the range of 0 to 1. This step normalizes

them in [0, 1] to guarantee they are evaluated by the

same span. To normalize the QoS value, we take into

account that each QoS attribute is monotonically

increasing or decreasing.

QoS attribute nature

qosMaxValue and

qosMinValue

 monotonically

increasing
qosMaxValue ≠

qosMinValue

Normalized

QoS value
1 −

qosMaxValue − qosValue

qosMaxValue − qosMinValue

 monotonically

increasing
qosMaxValue =

qosMinValue

Normalized

QoS value
1

 monotonically

decreasing

qosMaxValue ≠

qosMinValue

Normalized

QoS value
1 −

qosValue − qosMinValue

qosMaxValue − qosMinValue

 monotonically

decreasing

qosMaxValue =

qosMinValue

Normalized

QoS value
1

Table 6: QoS value normalization.

Table 6 shows how to normalize QoS value, where

qosMaxValue and qosMinValue values show the

maximum and minimum values of the QoS attribute

between all candidate services.Algorithm 6 takes as

inputs a set of candidate services in “CandidateServices “

and calculated QoS weights from a service user request

and establishes the QoSServices matrix of QoS scores,

and gives as output a vector QoSScore which contains

the overall QoS score of each candidate Web service.

QoSServices is a matrix where rows represent candidate

Web services, and columns represent QoS attributes.

Algorithm 7: QoSScoreComputing(CandidateServices,

QoSConstraints)

MtxServices: Matrix of float ;

QoSScore: Vector of float initialized by <0, 0,……, 0> ;

Begin

1: foreach service S in CandidateServices do

begin

2: foreach QoSParameter in S do

 begin
3: MtxServices[i, j] : =

NormalizedValue(QoSCharacteristic.Value);

4: QoSScore[i] := QoSScore[i] + (MtxServices[i, j] 

QoSConstraints.QoSWeight);

 j:= j +1;

 endfor

5: i:= i +1;

end for

End

In line 3, we calculate for each candidate Web service the

normalized value of each QoS attribute.

In line 4, we calculate for each candidate Web service the

overall QoS score which is the sum of each normalized

QoS value multiplied by the weight given in the service

user request.

6.3 QoS monitoring

The QoS monitoring process aims to monitor and

measure the QoS values in order to verify whether the

measured values comply with QoS values published by

the Web service provider. As it is mentioned in Section

4.2, we distinguish two different types of QoS: The static

and dynamic. The QoS monitoring process is interested

in dynamic QoS monitoring, because QoS values are

known only after the Web service execution.

The QoS monitoring in the field of Web services has

been studied by many addressed (e.g., [[37] [38] [39]

[40] just to name a few). The authors of [37] introduce a

QoS model which covers various dimensions of QoS, i.e.

availability, accessibility, performance, reliability,

security, and regulatory, and propose metrics to enhance

QoS measurement on the service side. They realized the

monitoring of QoS dimensions above through a

monitoring extension of Java system application server

developed in Java EE 5.0. In [38], the authors present a

Probe-based Observability Mechanism required for the

monitoring of the web services that facilitates

observation of internal execution details of the web

services during testing and execution. The authors in [39]

carry out a research to develop a monitoring method for

web services response time. The method proposed in

PrefWS3: Web Services Selection System... Informatica 40 (2016) 257–274 269

this research is based on creating a proxy for connecting

to the required Web service, and then calculating the

Web services response time via the proxy. The work in

[40] presents the Vienna Runtime Environment for

Service-oriented Computing (VRESCo) that addresses

some issues of current Web service technologies, with a

special emphasis on service metadata, quality of service,

service querying, dynamic binding and service

mediation. The QoS monitoring is performed in their

work to evaluate the framework through performance

measurements on service querying, binding, mediation

and invocation performances.

According to these studies, QoS monitoring can be

performed into two approaches: (1) Client-side

monitoring: the measurement of QoS is run on the client

side [39], (2) Server-side monitoring: the measurement

of QoS is run on the server side [37] [40]. On one hand,

client-side monitoring usually gives less accurate

monitoring results and requires that clients must agree to

install monitoring software which may not always be the

case. But on the other hand, server-side monitoring is

usually accurate but requires access to the actual service

implementation which is not always possible.

In our work, we choose the use of a server-side

monitoring mechanism, while ensuring that it does not

affect existing implementations of the observed Web

services. For this raison, our QoS monitoring mechanism

is based on Windows Performance Counters (WPC)

provided by Windows Communication Foundation

(WCF) [41], which are part of the .NET Framework and

offer a server-side QoS monitoring for Web services.

Windows Performance Counters allow measuring the

performance of Windows Communication Foundation

Web services without altering any existing services.

WPC supports a rich set of counters that can be

measured during the execution time of Web services.

Performance counters are scoped to three different levels:

Service, Endpoint and Operation. Each of these levels

has performance counters to analyse the performance of

a hosted WCF Web service. Service performance

counters measure the service behaviour as a whole and

can be used to diagnose the performance of the whole

service. They can be found under the

ServiceModelService 4.0.0.0 performance object when

viewed with Performance Monitor (Figure 6).

In our work, we focus on the following counters:

"Call Duration” counter to measure the execution time,

"Calls Per Second” counter to measure the number of a

Web service invocations, and "Failed Calls Per Second”

counter to measure the number of a Web service failures.

As depicted in figure 7, the way the QoS monitoring

mechanism functions can be summarized as follows:

- Initially, the QoS monitor has to be installed on the

service provider host. QoS monitor is itself a

service which captures the performance counters of

the monitored web services.

- Once installed, the QoS monitor has to be

configured by setting the required parameters in the

Web.config file. This configuration allows the

operating system to attach the performance counters

to the monitored web services.

- By default, the Windows Performance Counters are

turned off because they could significantly increase

the memory footprint of the WCF application.

Performance counters can be enabled for the service

from the diagnostics section of the Web.config file,

as shown in the following sample configuration:

<configuration>

 <system.serviceModel>

 <diagnostics

performanceCounters="All" />

 </system.serviceModel>

</configuration>

To specify the web service we want to monitor, we

need to add its name in the services section of the

Web.config file as follows:

<configuration>

 <system.serviceModel>

 <services>

<service

name="MonitoredServiceName" >

 ……

 </service>

 </services>

 </system.serviceModel>

</configuration>

- Once started, the QoS monitor constantly continues

reading the current values of the performance

counters (Call Duration, Calls Per Second, Failed

Calls Per Second) and transmits them to the QoS

aggregator component of the PrefWS3 system. The

QoS monitor sends sequentially, to the QoS

aggregator, a SOAP message containing

information about the service provider, the

monitored service and the corresponding measured

performances.

Figure 6: Windows Performance Counters:

ServiceModelService Category.

270 Informatica 40 (2016) 257–274 R. Benaboud et al.

- When the QoS aggregator component receives the

performance counters values sent by the QoS

monitor, it aggregates these values to calculate the

execution time and the reliability of the monitored

Web service. The performance counter “Calls

Duration" of the counter category

“ServiceModelService 4.0.0.0" is used to calculate

the execution time QoS, and the performance

counters "Calls Per Second”, "Failed Calls Per

Second” of the same category are used to calculate

the reliability QoS.

- Finally, the measured QoS values are transmitted to

the decision maker component. This latter compares

the measured QoS values with the corresponding

QoS values published by the Web service provider

in the OWL-S repository. If the QoS values

published do not comply with the measured QoS

values then the service provider will be punished.

Several forms of punishments have been proposed.

In our work, we propose to temporarily exclude the

web service whose QoS are not real.

The QoS monitoring mechanism of the PrefWS3

system makes use of Windows Performance Counters,

which are integrated into the operating system and thus,

representing an easy way to QoS monitoring.

7 Rating and reputation mechanism
Before paying the execution price of a Web service, the

user is always looking to be sure of his choice. One of

the mechanisms used to make the user have confidence

in the selected web service is to give him the ratings of

other users who have already used it. Once the web

service is selected, the service user should provide a

rating score to show the user satisfaction level of the

invoked web service. A rating score is an integer number

that ranges from 0 to 4, where the meaning of each value

is as follows: 4: very satisfied, 3: satisfied, 2: neither

satisfied or dissatisfied, 1: dissatisfied, 0: very

dissatisfied.

In existing Rating-based approaches, the satisfaction

criterion of the rater is unknown. Without knowing the

intendment of the rater, it is almost impossible to make

sense of a given rating. For example, a service user may

give a high rating to a Web service because its execution

time is small. If the execution time is not significant for a

second service user, then the first service user’s high

rating will not be significant either. Hence, it is important

to take into account the satisfaction criteria of each

service user. This is done by giving a rate score for each

QoS attribute of the used Web services.

The user ratings are stored in an RDF triple store. As

user ratings refer to a given service request, each Rating

instance contains the service user who performed the

rating, the rated service, the rating date, and finally the

rating scores (one rating score per QoS attribute). New

ratings from the same user for the same service replace

older ratings.

Over time, the qualities of a service can be changed

by the service provider. In this case, old ratings are no

longer representative. To address this problem, we give

more importance to the recent ratings. This is done using

Equation 2, where d is the number of days between the

current date and the rating submission one. Figure 8

shows the evolution of the rating value over the time

where the initial value equals 3.

UpdatedRate(S. QoSProperty)=
𝑅𝑎𝑡𝑒(𝑆.QoSProperty)

log10(10+𝑑)
 (2)

The reputation score of a service S within a single

QoS attribute is computed as the average of all ratings

the service receives from service users for this QoS

attribute as indicated in Equation 3, where N is the

number of ratings for the service S. Each rating score is

normalized, as a monotonically increasing criterion, to

have a value in the range of 0 to 1.

ReputationScore(S. QoSProperty) =

NormalizedValue(
∑ UpdatedRate(S.QoSProperty)

N
) (3)

The reputation score of a service within multiple

QoS attributes is computed, by Equation 4, as the

weighted sum of the rating score of each quality

attribute.

OverallReputationScore(S) =

∑ ReputationScore(S.QoSProperty)∗weight

∑ weight
 (4)

Figure 7. QoS monitoring mechanism.

OWL-S
 Repository

Decision Maker

QoS Aggregator
PrefWS3

Published QoS

Measured QoS

Provider host

Web Services

QoS Monitor
Call Duration Calls Per Second

Failed Calls

Per Second

Figure 8: Example of the rating value evolution.

PrefWS3: Web Services Selection System... Informatica 40 (2016) 257–274 271

8 Evaluation
In implementing PrefWS3, we use some software and

tools. PrefWS3 is developed with Java under Eclipse IDE

platform. PrefWS3 makes use the OWL-S API [42] for

OWL-S files parsing. Jena 2.2 [43] is used for reasoning

on OWL.

In order to evaluate the performance of our proposed

semantic similarity algorithm which calculates the

semantic similarity between a request and a web service,

we compared it with two semantic matchmakers, the

SAM architecture introduced in [15], and the BSA

algorithm presented in [16].We use Book, Person and

Printed Material ontology presented in [15], which is

retrieved from “OWL-S Service Retrieval Test

Collection version 2.1” available from the

SemWebCentral Website2. In addition, we also used

request and service definitions presented in the same

work.

As shown in Figure 9, Book, Person and Printed

Material ontology contains information on printed

material classification and related concepts such as

publishers, readers, authors, book types and several other

concepts.

As the properties of the superclass are inherited by

its subclasses, and in order to apply our algorithm, using

the ontology described above, we assume that each

subclass (or subconcept) in the ontology contains one

more property than its superclass (superconcept). The

request and the web services input/output parameters are

given in Table 7. Request input concepts are Ordinary-

Publisher, Novel, and Paper-Back. Request output

concepts are Local-Author and Genre.
To demonstrate the value-added features of our

semantic similarity algorithm, we present a test case

between Request and Web Service 1 for input matching.

The input parameters for Web Service 1, as shown in

Table 7, are Publisher, ScienceFiction-Book. We

calculated the semantic similarity using the ConceptSim

function.

By applying the InputsSim algorithm, input concepts

in both request and Web service 1 are matched as

follows:

- Ordinary-Publisher  Publisher: ConceptSim = 1,

since: Ordinary-Publisher < Publisher.

- Novel  ScienceFictionBook:

ConceptSim =
Size(prop(Novel)prop(ScienceFictionBook))

Size(prop(Novel)prop(ScienceFictionBook))
 =

4

6
 = 0.666, since:

Novel <> ScienceFictionBook.

- Paper-Back: No match

2 http://projects.semwebcentral.org

- Paper-Back is an extra input of a request, so it can be

ignored and thus, the InputSim(Request, Web Service

1) = (1+0.666)/2 = 0.833

Results of the input-output similarity calculation of

all services in the test case are listed in Table 8.

Service 2 is found to be the most similar to Request

according to input matching, since it has the highest

score for input matching of all the other classes. In fact,

all the SAM, BSA, and PrefWS3 found this to be the best

matched service in input matching with a score of 0.4388

by SAM, a score of 0.77 by BSA, and a score of 0.833 by

PrefWS3. However, SAM, BSA, and PrefWS3 found the

Service 2 has the weakest match outputs with scores of

0.01447, 0.012, and 0.125 respectively.

On the other hand, in PrefWS3, matching Request

and Service 5 should give the highest score according to

output matching since {Genre → Genre : ConceptSim =

1} and {Local-Author → Publisher : ConceptSim =

0.25}. Both SAM and BSA found this to be the best

matched service for output matching and scored it as

1.00018 by SAM, and 1.2565 by BSA.

Furthermore, SAM and BSA found that Service 3

has the weakest match for inputs, so this places it the

latest in the rankings, which was also found as unrelated

and scored as 0.541 by PrefWS3.

All the SAM, BSA, and PrefWS3 found that Service

3 and Service 4 have the same output matching scores.

Thus, for Service 3 and Service 4, BSA orders the results

according to the maximum value of input scores, whereas

SAM uses a random selection. Finally, both the BSA and

PrefWS3 found the order of total score to be:

Service 5 > Service 1 > Service 4 > Service 2 >

Service 3.

The results reveal that, in both BSA and PrefWS3

systems, Service 5 has the highest total score considering

both input and output matching, and Service 2 has the

lowest total score. As a conclusion, comparing the results

given by PrefWS3 with those given by SAM and BSA,

we note that PrefWS3 offers good results but with less

calculation, and therefore less time.

9 Conclusion
In this article, we introduce a semantic web services

discovery and selection system (PrefWS3). An advanced

feature of PrefWS3 is that it performs the service

discovery and selection based on the matching level of

the service advertisements with the user requests in terms

of both functional and non-functional parameters.

PrefWS3 is considered to be a user-centric system which

helps and guides users on formulating their requirements

and preferences, and hence, allows to free consumers

from time consuming human computer interactions and

Web search. Additionally, PrefWS3 uses a translator to

translate WSDL files into OWL-S and provides

semantically enriched description. As a result, enhancing

web services with a semantic description of their

functionality will further improve their discovery and

selection. PrefWS3 uses an efficient semantic-based

272 Informatica 40 (2016) 257–274 R. Benaboud et al.

matching mechanism which calculates the semantic

Figure 9: Book, Person and Printed Material ontology section. [15]

Request/Service

Name

Inputs Outputs

Request Ordinary-Publisher, Novel, Paper-Back Local-Author, Genre

Web Service 1 Publisher, ScienceFictionBook Author, Price

Web Service 2 Book, Alternative- Publisher, Book-Type Publisher, Price, Date

Web Service 3 FantasyNovel, Author Price, Comic

Web Service 4 Newspaper, Book-Type, Person Review, Fantasy

Web Service 5 Publication, Book-Type, Reader Genre, Publisher

Table 7: Request and Services parameters.

Service

name

Scores of SAM Scores of BSA Scores of PrefWS3

Input

Sim

Score

Output

Sim

Score

Total

Score

Input

Sim

Score

Output

Sim

Score

Total

Score

InputS

im

Score

Output

Sim

Score

Tota

l Score

Service 1 0.35964 0.12229 0.21723 0.640 0.8571 0.7485 0.833 0.5 0.666

Service 2 0.4388 0.01447 0.27771 0.77 0.012 0.391 0.833 0.125 0.479

Service 3 0.18026 0.17033 0.08078 0.47 0.5076
0.4888

0.541 0.5 0.520

Service 4 0.23636 0.12229 0.69465 0.5321 0.5076
0.5198

0.761 0.5 0.630

Service 5 0.31718 1.00018 0.20024 0.575 1.2565
0.9157

0.75 0.625 0.687

Table 8: Comparison of PrefWS3, SAM, and BSA based on input/output parameter matching.

similarity between the request and the web service based

on the concepts position in the ontology, the common

properties between concepts, and also, either concept has

annotated an input/output request parameter or an

input/output web service parameter. Furthermore,

PrefWS3 includes a QoS-aware process and provides a

reputation mechanism that enables service users to

evaluate the credibility of the web services they use, and

takes into account the satisfaction criteria of each service

user. In order to evaluate the effectiveness of our system,

the results of a comparison of the PrefWS3 and some

other published approaches (BSA and SAM) have been

presented.

PrefWS3: Web Services Selection System... Informatica 40 (2016) 257–274 273

As future directions, we plan to incorporate the Web

services composition into PrefWS3 in order to make it

more practical in real-world applications. To this end,

two main questions need to be asked:

1) How to combine Web services in a suitable way to

fulfil the user request?

To answer this question, several approaches have

been proposed such as: Constraint based composition,

Business rule driven composition, AI Planning based

composition, Context information based composition,

Process based composition, and Model and aspect driven

composition [44]. AI Planning approach has become

interesting due to the maturity that the planning area has

achieved in AI. We decide to extend our PrefWS3

system to support service composition by combining

semantic matching and an AI planning technique. We

focus on functional input and output parameters of Web

services. The latter are respectively the preconditions and

the effects in the planning context. Web service

composition is then viewed as an AI planning based

composition of semantic relationships between Web

service parameters. To this end, we intend to adapt the

functional matching mechanism of the PrefWS3 system

to support semantic similarities between input and output

parameters, and add a composition component that

implements an AI planning technique.

2) How to select the best composition among a set of

candidates that fulfil the same user request?

It is possible that the composition mechanism

generates multiple composite services fulfilling the user

request. In that case, the composite services are evaluated

and ranked along the non-functional parameters such as

QoS and user constraints, and the best composite service

is the one which is ranked on top. Selecting a composite

service that satisfies user constraints and preferences can

be viewed as a Constraint Satisfaction Problem (CSP).

To this end, we intend to formulate QoS based web

service composition as a CSP, and adapt our QoS

computing mechanism to compute the quality of a

composite service when it is given the QoS of its

underlying services.

References

[1] Averbakh. A, Krause. D and Skoutas. D. (2009).

Exploiting User Feedback to Improve Semantic

Web Service Discovery. 8th International Semantic

Web Conference. LNCS, Vol.5823, pp.33-48.

[2] Garofalakis. J, Panagis. Y, Sakkopoulos. E and

Tsakalidis. A. (2006). Contemporary web service

discovery mechanisms. Journal of Web

Engineering. Vol.5, No.3, pp.265-290.

[3] Hyunkyung. Y. P and TaeDong. L. (2013).

Ontology based keyword dictionary server for

semantic service discovery. IEEE Third

International Conference on Consumer Electronics.

pp. 295 – 298.

[4] Paliwal. A.V, Shafiq. B, Vaidya. J, Hui. X and

 Adam. N. (2012). Semantics-Based Automated

Service Discovery. IEEE Transactions on Services

Computing. Vol.5, No.2, pp.260 – 275.

[5] Kopecky. J, Vitvar. T, Bournez. C and Farrell. J .

(2007). SAWSDL: Semantic Annotations for

WSDL and XML Schema. IEEE Internet Comput.

Vol.1, No.11, pp.60-67.

[6] Roman. D, Keller. U, Lausen. H, de Bruijn. J, Lara.

R, Stollberg. M, Polleres. A, Feier. C, Bussler. C

and Fensel. D. (2005). Web Service Modeling

Ontology. Journal of Applied Ontology. Vol.1,

pp.77-106.

[7] Martin. D et al. (2004). OWL-S: Semantic Markup

for Web Services. W3C. From http://www.w3.org/

Submission/OWL-S/.

[8] Dasgupta. S, Aroor. A, Shen. F and Lee. Y. (2014).

SMARTSPACE: Multiagent Based Distributed

Platform for Semantic Service Discovery. IEEE

Transactions on Systems, Man, and Cybernetics:

Systems. Vol.44, No.7, pp.805- 821.

[9] Benaboud. R, Maamri. R and Sahnoun. Z. (2013).

Agents and owl-s based semantic web service

discovery with user preference support. Int. Journal

of Web & Semantic Technology. Vol.4, No.2,

pp.57-75.

[10] Paolucci. M, Kawamura. T, Payne. T and Sycara.

K. (2002). Semantic matching of web services

capabilities. Proceedings of the 1st International

Semantic Web Conference (ISWC), Springer-

Verlag. pp.333–347.

[11] Dong. H, Hussain. F and Chang. E. (2012).

Semantic Web Service matchmakers: state of the art

and challenges. Concurrency and Computation:

Practice and Experience. Vol.25, No.5, pp.961-988.

[12] Klusch. M and Kapahnke. P. (2010). iSeM:

Approximated Reasoning for Adaptive Hybrid

Selection of Semantic Services. In: Aroyo L,

Antoniou G, Hyvönen E, ten Teije A,

Stuckenschmidt H, et al.., editors. The Semantic

Web: Research and Applications. Springer Berlin.

pp.30–44.

[13] Kiefer. C and Bernstein. A. (2008). The Creation

and Evaluation of iSPARQL Strategies for

Matchmaking. In: Bechhofer S, Hauswirth M,

Hoffmann J, Koubarakis M, editors. The Semantic

Web: Research and Applications. Springer Berlin.

pp.463–477.

[14] Klusch. M and Kapahnke. P. (2012). Adaptive

Signature-Based Semantic Selection of Services

with OWLS-MX3. Multiagent and Grid Systems.

Vol.8, No.1,pp.69–82.

[15] Erdem. S.I and Ayse. B. B. (2008). SAM: Semantic

Advanced Matchmaker. R. Nayak et al. (Eds.):

Evolution of the Web in Artificial Intel. Environ.

Vol.130, pp.163–190.

[16] Çelik. D and Elçi. A. (2013). A broker-based

semantic agent for discovering Semantic Web

services through process similarity matching and

equivalence considering quality of service. Science

China Information Sciences. Vol.56, No.1, pp.1-24.

[17] De Renzis. A, Garriga. M, Flores. A and Cechich.

A. (2016). Case-based Reasoning for Web Service

http://link.springer.com/search?facet-creator=%22Anna+Averbakh%22
http://link.springer.com/search?facet-creator=%22Daniel+Krause%22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hyunkyung%20Yoo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.YooMi%20Park.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.TaeDong%20Lee.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6697948
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6697948
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6697948
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paliwal%2C%20A.V..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Shafiq%2C%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Vaidya%2C%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hui%20Xiong.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Adam%2C%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5744076&queryText=Semantics-Based+Automated+Service+Discovery&newsearch=true&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5744076&queryText=Semantics-Based+Automated+Service+Discovery&newsearch=true&searchField=Search_All
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/%20Submission/OWL-S/
http://www.w3.org/%20Submission/OWL-S/
http://link.springer.com/search?facet-creator=%22Duygu+%C3%87elik%22
http://link.springer.com/search?facet-creator=%22Atilla+El%C3%A7i%22
http://link.springer.com/journal/11432
http://link.springer.com/journal/11432

274 Informatica 40 (2016) 257–274 R. Benaboud et al.

Discovery and Selection. Electronic Notes in

Theoretical Computer Science. Vol.321, pp.89–112.

[18] Kolodner. J. (1993). Case-Based Reasoning,

Morgan Kaufmann Publishers, Inc.

[19] Sakkopoulos. E, Kanellopoulos. D and Tsakalidis.

A.(2006). Semantic mining and web service

discovery techniques for media resources

management. Int. Journal of Metadata, Semantics

and Ontologies, Vol.1, No.1, pp.66-75.

[20] Xu. Z, Martin. P, Powley. W and Zulkernine. F.

(2007). Reputation-Enhanced QoS-based Web

Service Discovery. In Proceedings of the

International Conference on Web Services. pp.249

– 256.

[21] Mobedpour. D and Ding. C. (2013). User-centered

design of a QoS-based web service selection

system. Service Oriented Computing and

Applications. Vol.7, No.2, pp.117-127.

[22] Iordache. R and Moldoveanu. F. (2014). QoS-

Aware Web Service Semantic Selection Based on

Preferences. Procedia Engineering. Vol.69,

pp.1152–1161.

[23] Chouiref. Z, Belkhir. A, Benouaret. K and Hadjali.

A. (2016). A fuzzy framework for efficient user-

centric Web service selection. Applied Soft

Computing, Vol.41, pp.51-65.

[24] Chang. C and Kuo. C. (2013). A Web Service

Selection Mechanism Based on User Ratings and

Collaborative Filtering. Smart Innovation, Systems

and Technologies. Springer-Verlag Berlin

Heidelberg. Vol.20, pp.439-449.

[25] Nguyen. H. T, Zhao. W and Yang. J. (2010). A trust

and reputation model based on bayesian network

for web services. IEEE International Conference on

Web Services. pp.251-258.

[26] Vu. L, Hauswirth. M and Aberer. K. (2005). QoS-

based Service Selection and Ranking with Trust and

Reputation Management. Proceedings of the

Confederated international conference on the Move

to Meaningful Internet Systems. pp.466-483.

[27] Grozavu. A, Pleşcan. S and Mărgărint. C. (2011).

Comparative Methods for the Evaluation of The

Natural Risk Factors’ Importance. Present

Environment and Sustainable Development. Vol.5,

No.1, pp.41–46.

[28] Zadeh. M, Seyyedi. M. (2010). Qos monitoring for

web services by time series forecasting. 3rd IEEE

international conference on computer science and

information technology (ICCSIT). pp.659–663.

[29] Limam. N and Boutaba. R. (2008). QoS and

Reputation-aware Service Selection. IEEE on

Network Operations and Management Symposium.

pp.403-410.

[30] Heß. A, Johnston. E and Kushmerick. N. (2004).

ASSAM: A Tool for Semi-Automatically

Annotating Semantic Web Services. In:

Proceedings of the 3rd International Semantic Web

Conference (ISWC). pp.320-334.

[31] Farrag. T, Saleh. A and Ali. H. (2013). Towards

SWSs Discovery: Mapping from WSDL to OWL-S

Based on Ontology Search and Standardization

Engine. IEEE Transactions on Knowledge and

Data Engineering. Vol.25, No.5, pp.1135-1147.

[32] Ashraf. B. (2014). Fast Mapping Algorithm from

WSDL to OWL-S. I.J. Information Technology and

Computer Science. Vol.6, No.9, pp.24-31.

[33] Lin. L, Kai. S and Sen. S. (2008). Ontology-based

QoS-Aware Support for Semantic Web Services.

Technical Report at Beijing University of Posts and

Telecommunications.

[34] Zhang. Y, Huang. H, Yang. D, Zhang. H, Chao. H

and Huang. Y. (2009). Bring QoS to P2P-based

semantic service discovery for the Universal

Network. Journal Personal and Ubiquitous

Computing. Vol.13, No.7, pp.471–477.

[35] Saaty. T. (1995). Decision Making for Leaders.

RWS Publications.

[36] [36] Lin. D. (1998). An information-theoretic

definition of similarity. In Proceedings of

International Conference on Machine Learning.

pp.296-304.

[37] Artaiam. N and Senivongse. T. (2008). Enhancing

service-side qos monitoring for web services. In

SNPD '08: Proceedings of the 2008 Ninth ACIS

International Conference on Software Engineering,

Artificial Intelligence, Networking, and

Parallel/Distributed Computing. IEEE Computer

Society. pp.765-770.

[38] Saxena. N, Goel. A and Singh. D. (2009). A probe-

based observability mechanism for monitoring of

web services. Int J Recent Trends Eng. Vol.1, No.1,

pp.600–602.

[39] Asadollah. S. A and Thiam. K. C. (2011). Web

service response time monitoring: architecture and

validation. Theoretical and Mathematical

Foundations of Computer Science. Vol.164,

pp.276–282.

[40] Michlmayr. A, Rosenberg. F, Leitner. P and

Dustdar. S. (2010). End-to-end support for QoS-

aware service selection, binding, and mediation in

VRESCo. IEEE Trans Serv Comput. Vol.3, No.3,

pp.193–205.

[41] Peiris. C, Mulder. D, Bahree. A, Chopra. A,

Cicoria. S and Pathak. N. (2007). Pro WCF:

Practical Microsoft SOA Implementation”. Apress.

[42] Hewlett-Packard Development Company. (2001).

Jena RDF API. from: http://www.hpl.hp.com/

semweb/jena.htm

[43] Mindswap-Maryland Information and Network

Dynamics Lab. (2004). Semantic Web agents

project: OWL-S Java API. from: http://

www.mindswap.org/2004/owl-s/api/index.shtml

[44] D’Mello. D. N, Ananthanarayana. V. S and Salian.

S. (2011). A Review of Dynamic Web Service

Composition Techniques. First International

Conference on Computer Science and Information

Technology. Springer Berlin Heidelberg. pp 85-97.

http://link.springer.com/journal/11761
http://link.springer.com/journal/11761
http://link.springer.com/search?facet-creator=%22Chin-Chih+Chang%22
http://link.springer.com/search?facet-creator=%22Chu-Yen+Kuo%22
http://link.springer.com/bookseries/8767
http://link.springer.com/bookseries/8767
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5552632
http://link.springer.com/book/10.1007/978-3-642-24999-0
http://link.springer.com/book/10.1007/978-3-642-24999-0
http://www.hpl.hp.com/

