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With the growing number of web services on the Web, many approaches have been proposed to help 

users discover and select the desired services. Nevertheless, finding the best service that meets the user 

needs and preferences is still a problem. In this article, we introduce a user preferences based semantic 

web services discovery and selection system (PrefWS3). PrefWS3 is considered to be a user-centric 

system which helps users in formulating their requirements and preferences. This system involves 

semantic enhancement of both request and web services and provides an efficient semantic-based 

matching mechanism, which calculates the semantic similarity between the request and the web service. 

Furthermore, PrefWS3 includes a QoS-aware process and provides a reputation mechanism that 

enables users to evaluate the credibility of the web services they use. In this article, we also present the 

results of a comparison of the PrefWS3 and some other published approaches to evaluate its 

effectiveness. 

Povzetek: Prispevek obravnava izbiro spletnih storitev na osnovi semantike in preferenc uporabnika. 

1 Introduction 
Web services have emerged as a key technology for 

implementing Service Oriented Architectures (SOA), 

aiming at providing interoperability among 

heterogeneous systems and integrating inter-organization 

applications [1]. Web services are designed to be selected 

via discovery mechanisms. Web Service discovery 

mechanisms include a series of registries, indexes, 

catalogues, agent-based and Peer to Peer solutions. The 

most dominating among them is the Universal 

Description Discovery and Integration (UDDI) [2] which 

is essentially based on keywords search on WSDL 

descriptions of Web services. Simple keyword matching 

does not capture the underlying semantics of web 

services [3].  As a result, only the services which have 

same syntactic description with the user request may be 

considered for selection. For example, when searching 

services with the keyword ‘vehicle’, the ones whose 

descriptions contain the word ‘car’ will not be returned. 

Thus, the discovery process is also constrained by its 

dependency up on human intervention in choosing the 

appropriate service based on its semantics [4]. 

In order to solve the above-mentioned problem, a 

variety of conceptual models have been proposed over 

these past years to add semantics to Web Services 

descriptions. These include WSDL-S [5], WSMO [6], 

and OWL-S [7]. These so-called Semantic Web services 

(SWS) are Web services that are annotated with semantic 

descriptions. This semantic is made through ontologies; 

one of the important technologies of the Semantic Web.  

The discovery of SWS is mainly based on their 

functional aspects (Inputs, Outputs, Pre-conditions and 

effects). However, due to the increasing availability of 

Web services that offer similar functionalities, other 

parameters have to be considered during the discovery 

process, especially user preferences that are expressed in 

term of constraints on quality of service (QoS), i.e., 

execution time, cost, reliability, availability, etc.  

Several approaches of Web Services discovery have 

been proposed in the literature; however, finding the best 

and the right web service that meets user needs and 

preferences is still a problem. This is due to a number of 

challenges. Some of them include [4] [8]:  

- Descriptions of the vast majority of already existing 

web services are specified using WSDL and do not 

have associated semantics. 

- From the user’s point of view, expressing a request 

can be a disturbing burden, because he may not have 

the required expertise or skills. 

- Searching is a simple keyword based search; as a 

consequence, matching does not capture the 

underlying semantics of web services.  

- Accurate service matchmaking for service discovery 

can be computationally very expensive. 

- Dishonest service provider may advertise fake QoS. 

In this paper, we present a complete system for web 

service discovery and selection named PrefWS3, which 

is able to cope with most of the challenges mentioned 
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above. The proposed system covers the entire spectrum 

of tasks from service request to service invocation, and 

also after service invocation. 

 
Figure 1: The key steps of PrefWS3. 

Figure 1 illustrates the key steps of PrefWS3: The 

first step involves semantic and QoS enhancing of the 

request and web service description. The second step 

deals with the functional parameters based matching of 

the request against the advertisement services. In the 

third step, we perform a QoS based matching. In the last 

step, the user feedback is taken into account for the 

selection of the best web services. These steps make 

PrefWS3 a cascading filtering mechanism that finds the 

best web services from a set of raw web services.  
Several approaches have discussed separately the 

previous four steps, but not all at the same approach. In 

addition, these approaches differ in the way of each step 

is implemented. PrefWS3 aims to provide a more “user-

centric” system simplifying the service discovery using 

semantics while satisfying QoS requirements, and to free 

users from time consuming human computer interactions 

and Web search. To show the effectiveness of PrefWS3, 

we compare it with other approaches. The contributions 

of this paper regarding the different steps can be 

summarized as follows:   

1) Request and web service descriptions enhancing: 

- Enhancement of OWL-S profile with QoS 

information. 

- Provide users a way to specify their 

requirements and preferences expressively and 

flexibly. 

2) Functional parameters based matching: Presenting an 

efficient matchmaking mechanism that captures semantic 

similarity between requests and services in a more 

efficient way with less time. 

3) QoS-aware service selection:  

- Provide a QoS based filtering mechanism that 

aims to filter out services that do not meet the 

service user preferences. 

- Introduce a QoS monitoring mechanism that 

aims to measure the QoS values in order to 

verify whether the measured values comply 

with QoS values published by the Web service 

provider. 

4) Reputation based ranking: Provide a mechanism that 

gives confidence to a user when selecting a web service. 

In a previous paper [9], we have addressed some 

aspects of the PrefWS3 system. The present paper 

extends the last one by introducing new important 

mechanisms such as WSLD2OWLS translating, QoS 

weights calculating, and QoS monitoring mechanisms. 

Furthermore, the ontology-based OWL-S extension, the 

QoS based services filtering and the reputation 

mechanisms, which are previously addressed, are 

extended in order to make the service selection process 

more accurate and practical. 

The rest of the paper is organized as follows: We 

present the related works in Section 2.  Section 3 gives 

an overview of the proposed system, and section 4 

provides a detailed discussion on request and web 

services descriptions enhancing. The detailed description 

of functional parameters based matching is presented in 

Section 5. Section 6 and 7 include a discussion on QoS 

based matching and Reputation based ranking 

respectively. The evaluation of the proposed system is 

presented in Section 8. Finally, a conclusion and future 

work are presented in Section 9. 

2 Related works 
Researches in Web services discovery have been 

necessary since the number of available services on 

internet has increased and the user gets tired to find 

desired service. In this section, we present and analyze 

the related works in order to comprehend the benefits 

that may be obtained and to put our contributions in the 

context of service web discovery. 

Most current approaches for web service discovery 

depend on the measurement of the similarity degrees 

between service request and service advertisement. The 

work in [10] presents a matchmaking algorithm which 

compares input and output concepts of the user request to 

the service description and defines four levels of 

matching: Exact, Plug in, Subsumes, and Fail. However, 

the use of such discrete scale classification of matching is 

not sufficient to best rank services. Some of the relevant 

services might be eliminated due to not fitting those 

discrete scales. PrefWS3 calculates the total similarity 

score of the web services according to their relevancy to 

the user request. OWL-S matchmakers are the 

mainstream in contemporary SWS matchmakers [11]. 

iSeM [12] performs structural matching between the 

signatures of a given Web service and request using the 

logic-based input/output concept matching, the text 

similarity-based approach, the ontology-structure-based 

approach, and the SVM-based approach and, after that, 

adjusts its aggregation and ranking parameters using 

machine learning. iMatcher2 [13] combines the SPARQL 

query language for logical referencing and the syntactic 

similarity measure to calculates the degree of semantic 

matching between two OWL-S service profiles. OWLS-

MX3 [14] takes into account the shortest distance and the 

common parent classes between the concepts in an 
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ontology to compute the semantic similarity between 

input/output concepts of service and requests.  

The work in [15] introduces a Semantic Advanced 

Matchmaker (SAM), which provides ranking and scoring 

based on concept similarity. The authors created their 

own similarity distance ontologies to find the distance 

between objects. This ontology is supposed to contain 

proper similarity scores through the assignment of 

concept-similarity ratings of all the concepts in the 

ontology by a similarity ranking mechanism. They 

perform the matchmaking considering the input/output 

interface of services. In [16], the authors present a 

semantic matching approach for discovering semantic 

web services through a broker-based semantic agent 

(BSA). The BSA performs semantic matching according 

to the concepts meanings, the concepts similarities, and 

distance of concept relations. The semantic distance 

calculation is based on subsumption-based similarity and 

hasSynonym, hasIsa relationships. Against  the two latter 

works, PrefWS3 don’t use only the subsumption 

relationships between concepts to calculate their 

similarity but it also takes into account common 

properties between them. Additionally, the semantic 

distance between ontology concepts is not 

necessarily determined according to the distance between 

concepts. Two concepts that are directly  attached 

may be semantically very different. This case may take 

place when a concept extends another one by 

introducing several new properties. In the paper [17], the 

authors present the application of Case-based Reasoning 

(CBR) to the problem of service discovery and selection 

by introducing a case representation, learning heuristics 

and different similarity functions. The proposed approach 

combines notions of CBR with the use of WordNet as 

lightweight semantic basis. The major disadvantage of 

CBR is that users might rely on previous experience 

without validating it in the new situation [18]. This is 

clearly a problem in changing web services 

functionalities where past descriptions may not reflect 

current descriptions. In addition, the system requires a 

large memory space to store all the previous cases in the 

form of problem-solution pairs. Semantic web service 

technology is already adopted in several web based 

applications and solutions, the authors of [19] propose an 

intelligent system in order to facilitate semantic 

discovery and interoperability of Web Educational 

Services that manage and deliver Web media content. 

Unlike the aforementioned matchmakers, the 

matchmaking mechanism of PrefWS3 takes into account 

the role of concepts in the request and the web service, 

i.e, concepts are inputs or outputs, to calculate the degree 

of similarity between them. We think that an output in 

the request should not be considered as similar to a more 

generic output in the advertised service, and an input in 

the advertised service should not be considered as similar 

to a more generic input in the request.  

Since there are many functionally similar Web 

Services available in the Web, it is an absolute 

requirement to distinguish them using a set of non-

functional criteria such as Quality of Service (QoS). The 

work in [20] presents a QoS-based model for web service 

discovery by extending the UDDI’s data structure types 

in order to enhance UDDI model with QoS information. 

However service discovery and selection are still done by 

human consumer. Furthermore, this approach is 

impractical with a huge number of Web services 

available for selection. The authors of [21] propose a 

QoS-based web service selection system that handles 

QoS requests with both exact values and fuzzy values, 

return two categories of matching offers: super-exact and 

partial matches. In [22], users’ preferences are defined by 

a lexical ordering in accordance with their perceived 

importance. They presented an algorithm to compare 

web services based on their qualities (QoS). According to 

the proposed algorithm, a web service WS1 is considered 

better than a web service WS2 if the first QoS attribute 

that distinguishes between WS1 and WS2 ranks WS1 

higher than WS2. This algorithm is simple, but if the user 

indicates that tow preferences are equally important, the 

algorithm will take into account only the first preference 

in the lexical ordering and ignores the second preference. 

In our system, the use of the weighted sum method 

allows to take into account all preferences each with its 

importance degrees. The authors of [23] present a web 

service selection framework, which takes into account 

implicit preferences that are inferred from information 

related to context and profile of the user. Similarities 

between different attributes of service request and service 

are captured thanks to fuzzy-set-based techniques. It is 

argued that augmenting the user’s query by preferences 

depending on their context and their profile allows for 

highly improving the result’s quality. However, the 

proposed framework requires too much information and 

a large number of fuzzy rules to infer implicit 

preferences in each specific domain. Moreover, the 

proposed framework doesn’t take into account the 

importance of each QoS. 

A major problem in using QoS for service discovery 

is the specification and storage of the QoS information. 

Most of QoS-aware discovery mechanisms, described 

above, ignore this problem. In our work, we propose an 

ontology-based OWL-S extension to add QoS to OWL-S 

descriptions. Furthermore, PrefWS3 proposes a QoS-

based filtering mechanism which filters out services that 

do not meet the user preferences described as QoS 

constraints. This filtering mechanism takes into account 

the degree of confidence that the user has on the 

specified constraints.    

Some approaches already exist about involving the 

user in the process of service discovery. Those 

approaches are variants of reputation systems in which 

the users rate the service providers and share these 

ratings with other users. The work in [20] presents a 

reputation-enhanced model that contains a reputation 

manager which assigns reputation scores to the services 

based on user feedback regarding their performance. 

Then, a discovery agent uses the reputation scores for 

service matching, ranking and selection. The authors of 

[24] introduce a Web service selection mechanism based 

on user ratings and collaborative filtering. Services are 

ranked based on similarity to the user’s ratings from the 

collected feedback database from the users. The 
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similarity mechanism is calculated based on Pearson 

correlation coefficient. A Bayesian network trust and 

reputation model for web services is introduced in [25], 

which considers several factors when assessing web 

services’ trust: direct opinion from the truster, user rating 

(subjective view) and QoS monitoring information 

(objective view). In [26], the authors present a QoS-

based semantic web service selection and ranking 

solution with the application of a trust and reputation 

management method, which detects and deals with false 

ratings by dishonest providers and users. 

In most of the aforementioned reputation 

mechanisms, the satisfaction criterion of the rater is 

unknown since the service user gives one rating score for 

all QoS of the invoked service. Without knowing the 

intention of the rater, it is almost impossible to make a 

given rating meaningful. In the reputation mechanism of 

PrefWS3, the service user gives a rate score for each QoS 

attribute of the used Web services. Furthermore, 

PrefWS3 gives more importance to recent ratings. 

3 PrefWS3 overview 
PrefWS3 aims to provide a complete system for web 

service selection that simplifies the service discovery 

using semantics while satisfying the user preferences. 

PrefWS3 covers the entire discovery process through 

several components that take charge of the request and 

the web services descriptions process, functional based 

matchmaking, filtering and matching of quality of 

service parameters, and reputation and rating mechanism. 

There are four types of data needs to be collected in 

PrefWS3 to deal with the service request: Web service 

description in both WSDL or OWL-S files, public open 

OWL ontologies on the Internet, QoS data, and ratings. 

Figure 2 illustrates the main components of the 

PrefWS3 system, which are described as follows: 

Interface Management: This module manages the 

different interactions with the system users. Depending 

on the nature of the user and type of his request, the 

required scenario occurs. These requests include the 

following parts: 

- Requests from service providers in order to register 

their web services. 

- Requests from service consumers, which can be 

either web services lookup requests or service 

ratings. 

WSDL to OWL-S translating: A large number of service 

providers use WSDL based syntactic description to 

describe their services. Therefore in our system, we use a 

translator to translate WSDL files into OWL-S files and 

provide semantically enriched description. The 

translating mechanism uses domain ontologies for 

mapping complex types, inputs, and outputs of WSDL 

into OWL ontology concepts. 

OWL-S Extending with QoS Information: We use OWL-

S service profile as a model for semantic annotation of 

Web service descriptions. However, OWL-S mainly 

focuses on describing functional aspects of a Web 

service and does not describe QoS aspects. After the 

translation from WSDL files to OWL-S files, the OWL-S 

profile must be enhanced with QoS information to enable 

selecting the best services that meet user preferences.    

OWL-S repository: This component is responsible for 

storing the semantic service descriptions as OWL-S files, 

which could be used for service discovery process. 

QoS Weight Calculation: Service consumers have 

different preferences. For example, a service consumer 

may want a Web service with lower cost while for 

another one; the execution time could be his most 

important parameter. For this raison, we propose that the 

service consumer may specify that a QoS attribute is 

more important than another one. Indeed, a weight is 

given for each QoS attribute. Weights are in [0, 1] where 

higher weights represent greater importance. Because 

weights are an important factor for determining the 

overall quality of a Web service, we calculate the 

weights for each QoS attribute according to the service 

consumer QoS preferences. However, distributing the 

weight of many QoS attributes overburdens the service 

consumer. Weights calculation can be consider as a 

multiple decision criteria problem and therefore, we can 

apply an Analytic Hierarchy Process (AHP) which 

becomes one of the best known and most widely used 

multi-criteria decision making methods [27].  By 

applying this method, the system can easily calculate the 

weights because it requires only a simple evaluation 

between two QoS attributes. 

Request Generating: In PrefWS3, a request is described 

in the same manner as a service to facilitate the matching 

of their descriptions. Request input and output 

parameters are assumed to be mapped to concepts from 

domain ontology. Therefore, when a service consumer 

wants to insert his request, an Ontology-Guided Interface 

is offered and the service consumer must select the 

desired terms he wants to use in his request from the list 

of terms provided in a pop-up by the interface.  

 

Domain Ontologies: Service and request are described 

using relevant ontology concepts. Different domains may 

need different ontological representations. Therefore, to 

avoid the semantic heterogeneity due to the use of 

different concepts, we use a common ontological basis 

which contains comprehensive ontologies of different 

domains of Web services development. Input and output 

parameters of both request and service are defined using 

concepts from the same domain ontology. 

OWL Public Ontologies: Several websites provide open 

public ontologies such as DAML Ontology Library1, 

which contains more than 280 ontologies written in 

OWL or DAML+OIL. OWL public ontologies are used 

to create new ontologies or update already existing one in 

the domain ontologies repository. These public 

ontologies will be consulted periodically to develop or 

enrich the domain ontologies.     

                                                           
1 www.daml.org/ontologies/ 
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Domain Ontologies Management: This component takes 

charge of maintaining and updating domain ontologies 

with additional entities. The main challenges in updating 

domain ontologies are: 1) finding new information 

(concepts, relationships…), and 2) incorporating the new 

information in ontologies.  

Functional Matching: The web service input and output 

parameters contain the underlying functional knowledge 

that is extracted for improving functional service 

discovery. The main concept of service discovery is 

semantic-based matching between requests and services. 

It establishes a mapping between the input of the request 

and the input of the service and a mapping between the 

output of the request and the output of the service.  

QoS Based Filtering: Sometimes, the service consumer 

indicates that he refuses a Web service with a QoS 

having a value below or above a threshold specified in 

his query. QoS based filtering aims to filter out services 

that do not meet the service consumer preferences 

described as QoS constraints. 

QoS Score Computing: The role of the QoS score 

computing step is to find the degree of quality of the 

candidate services after completing the functional 

matching through their QoS metric information and user 

preferences.  

QoS Monitoring: The QoS monitoring mechanism aims 

to monitor and measure the QoS values of services in 

order to verify whether the measured values are in 

compliance with QoS values published by the Web 

service provider. QoS monitoring becomes the 

determining factors for customers to whether continue 

using the service or not [28]. 

Ratings Managing: Once the web service is selected, the 

service user should provide a rating score to show his 

satisfaction level of the invoked web service. The 

reputation mechanism enables service consumers to 

evaluate the credibility of web services they use, and 

takes into account the satisfaction criteria of each service 

consumer. 

Ratings Database: User ratings are stored in an RDF 

triple store and kept in Ratings database. 

Reputation Computing: The reputation of a service is a 

collective measure of the opinion of a community of 

users regarding their experience with the service [29]. It 

 
Figure 2. PrefWS3 architecture. 
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is computed as an aggregation of users’ feedbacks and 

kept in Ratings Database. Web services are ranked using 

their reputation and as a final step, best ranked candidate 

services are shown to the service consumer. 

4 Web service and request model 
Typically, Web services are described using functional 

and non-functional properties. Functional properties 

represent the description of the service functionalities. In 

our work, functional properties contain Service Name, 

Textual description, a set of Inputs and a set of Outputs. 

Non-functional properties represent the description of the 

service characteristics (e.g. QoS). Generally, QoS may 

cover a lot of attributes hosted by different roles. In this 

paper, we adopt three key attributes that the service 

customers mostly care about when they use a Web 

service. These are: Execution time, Execution price, and 

Reliability. Note that other QoS attributes can be applied 

to our system without fundamental modification. 

A request signifies a service demand. A request 

description includes functional and non-functional 

requirements. The former describes the functional 

characteristic of the service demand, such as inputs and 

outputs. The latter mainly focuses on the customer’s 

preferences, namely quality of service (QoS). In our 

work, a service consumer doesn’t have to give the value 

of each desired QoS attribute; he should get instead the 

means to specify that a QoS attribute is more important 

than another one. 

4.1 Translation from WSDL to OWL-S 

descriptions 

The WSLD2OWLS translating component of PrefWS3 

system translates WSDL files of the already existing 

Web Services into a semantic definition using OWL-S. 

This translation aims to add semantic annotations to Web 

Service specifications. In PrefWS3 system, we use only 

the OWL-S service profile in the discovery mechanism, 

so that the translator is responsible for translating WSDL 

files into OWL-S service profile files. Much research 

work has been done in mapping WSDL to OWL-S [30] 

[31] [32], but it is important to note here that until 

nowadays, the mapping process is not functioning fully 

automatically. The main raison is that the OWL-S 

description contains more information than the WSDL 

description. WSDL description provides only input and 

output information, while OWL-S description can 

provide inputs, outputs, preconditions and effects. 

Therefore this additional information must be set 

manually. In our work, we are limited to use only service 

name, textual description, inputs and outputs to 

functionally describe a web service. Because that 

information are already provided by WSDL description, 

the translator process is fully automatic.  

The benefit of describing Web services in WSDL 

format is that WSDL is machine-readable, namely it can 

be parsed automatically. WSDL description contains 

service name, service textual description, types, inputs, 

outputs and binding. Based on the mapping process 

presented in [31], we can summarize our translator 

mechanism, as depicted in Figure 3, as follows: 

- Service name in WSDL is translated into service 

name in OWL-S service profile. 

- Service textual description in WSDL is translated into 

Service textual description in OWL-S service profile. 

- Primitive XSD types in WSDL are translated into 

XSD simple types. 

- Complex XSD types in WSDL are translated into 

OWL ontology concepts.  

- Inputs and outputs of WSDL are mapping to OWL 

ontology concepts. 

4.2 Embedding QoS properties in the 

OWL-S service profile 

PrefWS3 system uses OWL-S service profile as a model 

for semantic annotation of Web service descriptions. 

However, OWL-S mainly focuses on describing 

functional aspects of a Web service and does not describe 

QoS aspects. Many approaches based on ontologies have 

been proposed for QoS [33] [34]. However, existing 

approaches are difficult for users to define their QoS 

based preferences. They usually assume that users could 

formulate their preferences easily and are accurately 

using the QoS languages. 

Based on our previous work [9], we propose an 

ontology based OWL-S extension to add non-functional 

description, referred to as QoS, to Web service 

description. The new service profile model is depicted in 

Figure 4. In OWL-S service profile we use a set of 

ServiceParameter which has a name 

(serviceParameterName) and a value (sParameter). For 

the connection of OWL-S and QoS ontology, the 

QoSProperty is a subclass of OWL-S ServiceParameter, 

and QoSParameterName and qosParameter are 

subproperties of OWL-S ServiceParmaerterName and 

sParameter property respectively. This method is open to 

apply any QoS ontologies. 

Each QoS property (QoSProperty) is defined by a 

name (qosParameterName) as a "String" and a set of 

characteristics (QoSCharacterisitic) that we describe as 

follows: 

 
Figure 3: Translation from WSDL to OWL-S descriptions. 
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- Value: Represents the value of a QoS property. From 

the provider viewpoint, this value represents the one 

of a QoS attribute of the provided service; but from 

the consumer viewpoint, it represents a threshold QoS 

value. 

- Monotony: This feature is used to distinguish between 

two types of QoS:  

 Quality with increasing monotony (e.g, 

execution time). In this case, the QoS property 

value indicated by the service user represents 

the minimum value to be taken into account.  

 Quality with decreasing monotony (e.g, 

execution price."). In this case, the QoS property 

value indicated by the service user represents 

the maximum value to be taken into account. 

- Unit: Each value of the QoS property is provided 

together with a measuring unit (e.g, Dollars, Seconds) 

- Dynamism: We distinguish two different types of 

QoS: The static and dynamic. A static QoS is a 

quality whose value is known before the Web service 

execution (eg, the execution price). Dynamic QoS is a 

quality whose value is known only after the Web 

service execution (eg, execution time). 

- QoSWeight: As described in previous section, the 

QoS weight allows specifying that a QoS property is 

more important than another one. 

- QoSCoeff: This coefficient represents the degree of 

confidence that a customer has on his preference. The 

use of this coefficient will be detailed in subsection 

6.1.   

The proposed OWL-S extension is particularly 

useful for the different actors involved in the publication, 

the discovery and the invocation of web services, mainly 

service provider and service consumer (or user). Service 

provider can enter the services by filling properties 

values of the different service qualities (ProviderQoS). 

To facilitate this task, PrefWS3 displays the definition 

and comments on the quality property whose value must 

be entered. The service consumer can query the OWL-S 

extension ontology to find services that best meet their 

QoS requirements (RequesterQoS).  

4.3 QoS weights calculating using AHP 

method 

To help the service user on determining the weights 

according to their QoS preferences easily, the “QoS 

weight calculation” component of PrefWS3 uses a 

mechanism based on an Analytic Hierarchy Process 

(AHP) method which allows the calculation of weights 

only by a simple evaluation between two QoS attributes. 

The Analytic Hierarchy Process, presented in [35], is 

a multi-criteria decision-making approach which can be 

used to solve complex decision problems. Basically, this 

approach involves the construction of a pair-wise 

comparison matrix where each element is rated against 

every other element by means of predefined scores (from 

1 to 9) indicating their relative importance as shown in 

Table 1. These comparisons are used to obtain the 

weights of importance of the decision criteria. If the 

comparisons are not perfectly consistent, then it provides 

a mechanism for improving consistency. 

In PrefWS3 system, the main steps for using the AHP 

method can be described as follows: 

1. In the first step, we identify the criteria to be used 

by the method. As an illustration, we choose three 

QoS attributes as criteria, which are: execution 

time, execution price and availability. 

2. In the second step, we establish the pairwise matrix 

based on service user preferences. By applying the 

AHP method, since we have three QoS attributes, a 

pairwise comparison matrix, containing nine 

elements, has been constructed. Suppose that the 

matrix, depicted in Table 2, represents the 

corresponding judgments with the pairwise 

comparisons. 

 
Figure. 4: OWL-S extension to support QoS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

presents 

serviceParameterName 

serviceName 

textDescription 

Service  Service  Profile 

&xsd;#string 

&xsd;#string 

Input 

Output 

&xsd;#string ServiceParameter 

&xsd;#string 

OWL;# Thing 

g 

Value Monotony Unit 

hasOutput 

sParameter 

qosParameter 
qosParameterName 

hasValue 
hasMonotony hasUnit 

QoSCharacteristic 

hasInput 

QoSProperty 

OWL-S Service Profile 

QoS Ontology 

                subClassOf                                                                                     

                hasProperty 

RequesterQoS 
ProviderQoS 

QoSWeight QoSCoeff 

hasQoSWeight hasQoSCoeff 

Dynamism 

hasDynamism 



264 Informatica 40 (2016) 257–274 R. Benaboud et al. 

Scales  Degree of 

preferences 

Explanation 

1 Equally Two activities contribute 

equally to the objective 

3 Moderately Experience and 

judgment slightly favor 

one over the another 

5 Strongly 

 

Experience and 

judgment strongly or 

essentially favor one 

activity over another 

7 Very strongly 

 

An activity is strongly 

favored over another and 

its dominance is shown 

in practice 

9 Extremely 

 

The dominance of one 

over another is affirmed 

on the highest possible 

order 

2, 4, 

6, 8 

Intermediate values 

 

Used to represent 

compromises between 

the preferences in 

weights 1, 3, 5, 7 and 9 

Recip

rocals 

Opposites Used for inverse 

comparisons 

Table 1: Pairwise comparison scale for AHP preferences. [35] 

QoS 

attribute 

Execution 

time 

Availability Execution 

price 

Execution 

time 
1 9 3 

Availability 1/9 1 1/5 

Execution 

price 

1/3 5 1 

Table 2: Example of a pairwise matrix. 

3. In the third step, we calculate the weight of 

importance of each QoS attribute based on the 

pairwise comparison matrix and many 

normalization operations. The weighted values are 

calculated by Algorithm 1. 

4. In the fourth step, we verify the consistency of the 

service user judgments. In the AHP method, 

judgments are considered to be adequately 

consistent if the corresponding consistency ratio 

(CR) is less than 0.1; otherwise it is necessary to 

review the subjective judgments. The CR is 

calculated as follows. First the consistency index 

(CI) needs to be calculated. This is done by 

algorithm 2. Next the consistency ratio CR is 

obtained by dividing the CI value by the Random 

index (RI) as given in Table 4 where n is the 

number of criteria. 

When applying the algorithm on the above example of 

pairwise comparison matrix, we get the weights 

presented in Table 3. 

Algorithm 1: Weights Calculation 

Input: C: matrix n  n     

// pairwise comparison matrix obtained in step 2. 

Output: W: vector with size n // weights vector  

Variables: P: matrix n  n initialized with 0 for each 

element. 

S, W: vectors with size n initialized with 0 for each 

element. 

Begin 

1:    for j  1 to n  do 

         for i  1 to n  do 

            S[j]  S[j] + C[i][j]; 

 2:    for j  1 to n  do 

         for i  1 to n  do 

            P[i][j]  C[i][j]/ S[j]; 

3:    for i  1 to n  do 

         for j  1 to n  do 

            W[i]  W[i] + P[i][j]; 

4:    for i  1 to n  do 

         W[i]  W[i]/n; 

End 

 

QoS 

attribute 

Execution 

time 

Availability Execution 

price 

Weight 0.67 0.06 0.27 

Table 3: Example of weight scores. 

n 1 2 3 4 5 6 7 8 9 

R I 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 

 

 

When the algorithm 2 is applied to the previous 

judgment matrix, it can be verified that the following are 

derived: max = 3.056, CI = 0.028, and CR = 0.048. The 

CR value is less than 0.10, so weights are accepted. 

Table 4: RI values for different values of n. [35]  
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5 Service functional matching 

The main concept of service functional matching is 

semantic matching between request and web services, 

namely, inputs and outputs of the request are both 

matched with the ones of the web service. We consider 

that all inputs and outputs refer to concepts of domain 

ontology. In fact, matching inputs (outputs) of the 

request and the web service is nothing other than the 

matching of concepts associated to inputs (outputs). To 

calculate the similarity of two concepts A and B, we take 

into account two parameters. The first is the relationship 

between the two concepts in the domain ontology. The 

second is the role of concepts in the request and the web 

service, i.e, concepts are inputs or outputs. 

Based on the relationship between the two concepts 

A and B in the domain ontology, we distinguish the 

following scenarios: 

 A = B: The concepts A and B are the same or they are 

declared as equivalent classes. 

 A < B: The concept A is a subclass of the concept B 

directly or indirectly. 

 B < A: The concept B is a subclass of the concept A 

directly or indirectly. 

 A <> B: The concept A does not have a parent/child 

relationship with the concept B, but both 

concepts have a parent concept C in 

common directly or indirectly. 

 AB : Otherwise. 

Based on the role of concepts in both request and web 

service, we think that an output in the request should not 

be considered as similar to a more generic output in the 

advertised service, while a request input could  be 

considered as similar to a more generic advertised input. 

For example, if a user requests a web service that gives 

as an output the list of “Algerian universities”, then the 

web service that gives as an output the list of all 

universities, cannot be considered as a suitable service 

because; it can return a set of “European universities” 

Cases Concept  A Concept B 

The role of concepts 

in request/web 

service 

Relationship 

between 

Concepts in 

Domain 

Ontology 

 
ConceptSim(A, B)  

 1 (line 1) Location Location / 
Location = 

Location 
1 

2  (line 3) PhdStudent Person 

PhdStudent 

R1.Inputs and 

Person  S1.Inputs 

PhdStudent  < 

Person 
1 

3 (line 4) AlgUniversity University 

AlgUniversity  

R1.Outputs and 

University  

S1.Outputs 

AlgUniversity 

< University 
0,8 

4 (line 7) University AlgUniversity 

University  

R2.Outputs and 

AlgUniversity  

S2.Outputs 

AlgUniversity 

< University 
1 

5 (line 8) Person PhdStudent 

Person  R2.Inputs 

and PhdStudent  

S2.Inputs 

PhdStudent < 

Person 
0,6 

6 (line 10) PhdStudent Employer / 
PhdStudent <> 

Employer 
0,5 

7 (line 11) Person University / 
Person  

University 
0 

Table 5: Example of conceptSim calculation. 

Algorithm 2: CI Calculation 

Inputs: C: matrix n  n   // pairwise comparison matrix 

obtained in step 2. 

W: vector with size n   // weights vector obtained by 

Algorithm 1   

Outputs: CI: float    // Consistency Index 

Variables: P: matrix n  n initialized with 0 for each 

element. 

 S: vector with size n initialized with 0 for each element. 

 max: float. 

Begin 

1:    for j  1 to n  do 

         for i  1 to n  do 

            P[i][j]  C[i][j]*W[j]; 

2:    for i  1 to n  do 

         for j  1 to n  do 

            S[i]  S[i] + P[i][j]; 

3:    for i  1 to n  do 

         S[i]  S[i]/W[i]; 

4:    max  Max(S[1], S[2],….., S[n]); 

5:    CI  (max – n)/(n – 1); 

End 
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that do not interest the user. We think also that an input 

in the advertised service should not be considered as 

similar to a more generic input in the request, while an 

output in the advertised service could be considered as 

such. For example, if a user requests a web service that 

takes as an input the ID of a student, then the Web 

service that takes as an input only the ID of a PHD 

student cannot be considered as a suitable service, 

because it ignores a much of the request’s inputs. 

To calculate the semantic similarity between two 

concepts A and B, we use the function ConceptSim(A, 

B). Our definition of this function is based on the 

constraints described above and on the information 

theoretic based measure presented in [36]. Semantic 

similarity is defined as the amount of common 

information that is shared between the concepts. 

Algorithm 3 gives the exact definition of the function 

ConceptSim(A, B), where: 

 The concept A annotates an input/output of the 

request, while the concept B annotates an 

input/output of the Web Service. 

 All inputs and outputs refer to concepts of the domain 

ontology, an example portion of which is shown in 

Figure 5. 

Algorithm 3 : ConceptSim(A, B) 

Begin 

1:  if A = B then  ConceptSim(A, B) = 1  

2:  else if A <  B  then  

3:             if A, B are Inputs  then ConceptSim(A,B)= 

1   

4:             else  if A, B are Outputs then 

               ConceptSim(A, B) = 
Size(prop(B))

Size(prop(A))
   endif 

5:             endif 

6:        else if B < A then  

7:           if A, B are Outputs then ConceptSim(A,B) = 

1    

8:           else if A, B are Inputs then 

                     ConceptSim (A, B) = 
Size(prop(A))

Size(prop(B))
  endif 

9:           endif  

10:      else if A <> B then  

                   ConceptSim(A, B) = 
Size(prop(A)prop(B))

Size(prop(A)prop(B))
 

 11:     else  ConceptSim (A, B) = 0  endif  

12:      endif 

13:     endif 

14: endif 

13: return ConceptSim (A, B).       

End 

 The function prop(C) denotes the set of properties of 

the concept C. 

 The function Size(S) denotes the number 

of elements of the set S. 

 If a concept A is a subclass of a concept B (A < B), 

then all properties of B are added to the properties of 

A (inheritance property). 

Example: For illustration, let us take two requests (R1, 

R2) and two web services (S1, S2). All inputs and 

outputs refer to concepts of the domain ontology shown 

in Figure 5. 

 R1: Inputs = { PhdStudent}, and                     

Outputs = { Location,  AlgUniversity } 

 R2: Inputs = { GeographicArea, Person }, and 

Outputs = { University }  

 S1: Inputs = { Person }, and                            

Outputs = { Location, University }   

 S2 : Inputs = { Location, PhStudent }, and     

Outputs = { AlgUniversity}   

The different cases can be illustrated in Table 5.  

After describing the semantic similarity between 

concepts, we give now the algorithm of inputs matching 

(algorithm 4). Where R.Inputs and S.Inputs denote the 

set of inputs in the request R and the set of inputs in the 

service S respectively, Card(E) denotes the cardinality of 

the set E, Sort(A) allow to sort the elements of the array 

A in descending order.  In lines 1, 2, 3 and 4, the 

algorithm matches each request input with all Web 

service inputs, and keeps the best mapping for each 

request input. In lines 9, 10, 11 and 12, it distinguishes 

between the situation when the number of request inputs 

is less than the number of service inputs and when the 

inverse situation is presented. In the first case, we have a 

miss of information; therefore InputsSim value is 

decreased (line 10). 

The outputs similarity given by 

OutputsSim(R.Outputs, S.Outputs) function is also 

calculated, by algorithm 5, in the same way as inputs 

similarity. But when the number of service outputs is less 

than the number of request outputs, the value of 

OutputsSim is decreased. Therefore we inverse line 10 

 

Figure 5: Part of simple Ontology. 
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with 12 and perform changes in variable names in the 

algorithm 3. 

For example, let us calculate the Inputs and Outputs 

similarity between Req1 and WSer1 shown previously. 

InputsSim = ConceptSim(PhdStudent, Person) = 1. 

OutputsSim= 
ConceptSim(Location,Location)+ConceptSim(AlgUniversity,University) 

2

  =  
1+0,8

2
  = 0,9. 

After calculating inputs and outputs similarity, 

functional similarity can be calculated using Equation 1. 

Where weights w1 and w2 are real values between 0 and 

1 and must sum to 1; they indicate the degree of 

confidence that the service consumer has in the input 

similarity and output similarity. By default, w1 and w2 

are set to 0.5. 

FunctionalSim(R, S) = w1*InputsSim(R.Inputs, S.Inputs) 

+ w2*OutputsSim(R.Outputs, S.Outputs)                      (1) 

In the previous example, FunctionalSim(R1, S1)= 

0.5*1 + 0.5*0.9= 0.95. This value indicates that R1 and 

S1 are semantically very close. 

Algorithm 4 : InputsSim(R.Inputs, S.Inputs) 

InSim: array of float; // initialized with 0 for each 

element 

 Begin 

1:   foreach e1 in R.Inputs do 

2:        foreach e2 in S.Inputs do 

3:    InSimi = Max(InSimi , ConceptSim(e1, e2));  

4:        end for 

5:        i = i + 1; 

6:   end for 

7:   Sort(InSim);  

8:   m = Card(R.Inputs) – Card(S.Inputs); 

9:   if m<0 then  

10:         InputsSim =  
∑ 𝐼𝑛𝑆𝑖𝑚𝑖

𝐶𝑎𝑟𝑑(𝑅.𝐼𝑛𝑝𝑢𝑡𝑠)
𝑗=1

𝐶𝑎𝑟𝑑(𝑅.𝐼𝑛𝑝𝑢𝑡𝑠)
/(|𝑚| + 1) 

11:   else 

12:         InputsSim = 
∑ 𝐼𝑛𝑆𝑖𝑚𝑖

𝐶𝑎𝑟𝑑(𝑆.𝐼𝑛𝑝𝑢𝑡𝑠)
𝑗=1

𝐶𝑎𝑟𝑑(𝑆.𝐼𝑛𝑝𝑢𝑡𝑠)
 

13:   end if 

14:   return InputsSim 

End 

6 The QoS-based matching phase 

6.1 QoS based services filtering 

Sometimes, the service user indicates that he refuses a 

Web service with a QoS having a value below or above a 

threshold specified in his query. For example, a service 

consumer may want a service with an execution price not 

exceeding 100 units. So, candidate services which are 

over this threshold value will be eliminated.  

This type of filtering is effective to meet user 

preferences, but suppose for the previous query, the 

discovery process has found a good Web service from 

the functional point of view but offers execution price 

equal to 101 units. This Web service will be ignored 

although 1unit may not make a difference to the user. In 

such case, we propose that when the user indicates a 

threshold for a QoS attribute, it associates a confidence 

coefficient "QoSCoeff". This coefficient represents the 

degree of confidence that the user has on the specified 

threshold. The value of this coefficient should be in the 

range [0, 1]. The value 1 means that the filtering 

algorithm must strictly observe the specified threshold. 

The value 0 means that the filtering algorithm must 

ignore this threshold. Therefore, our system uses 

algorithm 6 as a QoS-based services filtering algorithm. 

With this algorithm we can avoid the selection of web 

services that does not meet the service consumer 

preference. 

Algorithm 6 takes as inputs a set of candidate web 

services and a set of QoS based constraints, thresholds 

(QoSConstraints.value) and confidence coefficient 

(QoSConstraints.QoScoeff), then filter out unwanted 

services taking into account that each QoS attribute can 

be monotonically increased or decreased. 

For each Web service from the candidate Web 

services, we check the offered QoS properties to compare 

it with user constraints. 

Line 9: If the QoS property is a positive quality 

(QoSCharacteristic.Monotony = "increase"), then 

multiply the value of the threshold by the coefficient to 

further decrease the threshold value. 

For example, if the user indicates a threshold equal to 50 

units for the execution time QoS property, with a 

confidence coefficient equal to 0.7, then all Web services 

with an execution time more than 50 * 0.7 = 35 units are 

maintained. The others are filtered out. 

Line 11: If the QoS property is a negative quality 

(QoSCharacteristic.Monotony = "decrease"), then we 

divide the value of the threshold by the coefficient to 

further increase the threshold value. 

For example, if the user indicates a threshold equal to 

Algorithm 5 : OutputsSim(R.Outputs, S.Outputs) 

OutSim: array of float;  // initialized with 0 for each element 

Begin 

1:   foreach e1 in R.Outputs do 

2:        foreach e2 in S.Outputs do 

3:    OutSimi = Max(OutSimi , ConceptSim(e1, e2));  

4:        end for 

5:        i = i + 1; 

6:   end for 

7:   Sort(OutSim);  

8:   m = Card(R.Outputs) – Card(S.Outputs); 

9:   if m<0 then  

10:         OutputsSim = 
∑ 𝑂𝑢𝑡𝑆𝑖𝑚𝑖

𝐶𝑎𝑟𝑑(𝑆.𝑂𝑢𝑡𝑝𝑢𝑡𝑠)
𝑗=1

𝐶𝑎𝑟𝑑(𝑆.𝑂𝑢𝑡𝑝𝑢𝑡𝑠)
 

11:   else 

12: OutputsSim =  
∑ 𝑂𝑢𝑡𝑆𝑖𝑚𝑖

𝐶𝑎𝑟𝑑(𝑅.𝑂𝑢𝑡𝑝𝑢𝑡𝑠)
𝑗=1

𝐶𝑎𝑟𝑑(𝑅.𝑂𝑢𝑡𝑝𝑢𝑡𝑠)
/(|𝑚| + 1) 

13:   end if 

14:   return OutputsSim 

End 
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100 units for the execution price QoS property, with a 

confidence coefficient equal to 0.8, then all Web services 

with an execution price less than 100/0.8 = 125 units are 

maintained. The others are filtered out. 

Algorithm 6: QoSServicesFiltering(CandidateServices, 

QoSConstraints) 

Begin 

1:  foreach service S in CandidateServices do 

2:    foreach QoSParameter in S do  

3:     Coeff := QoSConstraints.QoScoeff 

4:     Mon:= QoSCharacteristic.Monotony 

5:     SVal:= QoSCharacteristic.Value 

6:     RVal:= QoSConstraints.Value 

7:    if (Coeff < > 0) then  

8:      if (QoSParameter.name = QoSConstraints.name)   

then                      
9:          if (Mon = “increase” ) and 

                 (SVal < (RVal  Coeff)) then           

10:               FilterOut (S) from CandidateServices. 

11:       elseif (Mon = “decrease” ) and  

                 (SVal > RVal / Coeff)) then           

12:                  FilterOut (S) from CandidateServices. 

          endif. 

        endif 

       endfor  

      endfor   

End 

6.2 QoS score computing 

Each QoS value (qosValue) needs to be normalized to 

have a value in the range of 0 to 1. This step normalizes 

them in [0, 1] to guarantee they are evaluated by the 

same span.  To normalize the QoS value, we take into 

account that each QoS attribute is monotonically 

increasing or decreasing. 

 
QoS attribute nature 

qosMaxValue and  

qosMinValue 

 monotonically 

increasing 
qosMaxValue ≠ 

qosMinValue 

Normalized 

QoS value 
1 − 

qosMaxValue − qosValue

qosMaxValue −  qosMinValue
 

 monotonically 

increasing 
qosMaxValue = 

qosMinValue 

Normalized 

QoS value 
1 

 monotonically 

decreasing 

qosMaxValue ≠ 

qosMinValue 

Normalized 

QoS value 
1 − 

qosValue − qosMinValue

qosMaxValue −  qosMinValue 
 

 monotonically 

decreasing 

qosMaxValue = 

qosMinValue 

Normalized 

QoS value 
1 

Table 6: QoS value normalization. 

Table 6 shows how to normalize QoS value, where 

qosMaxValue and qosMinValue values show the 

maximum and minimum values of the QoS attribute 

between all candidate services.Algorithm 6 takes as 

inputs a set of candidate services in “CandidateServices “  

and calculated QoS weights from a service user request 

and establishes the QoSServices matrix of QoS scores, 

and gives as output a vector QoSScore which contains 

the overall QoS score of each candidate Web service. 

QoSServices is a matrix where rows represent candidate 

Web services, and columns represent QoS attributes. 

Algorithm 7: QoSScoreComputing(CandidateServices, 

QoSConstraints) 

MtxServices: Matrix of float ; 

QoSScore: Vector of float initialized by <0, 0,……, 0> ; 

Begin 

1:  foreach service S in CandidateServices do 

begin 

2:     foreach QoSParameter in S do  

  begin 
3:       MtxServices[i, j] : =           

NormalizedValue(QoSCharacteristic.Value); 

4:      QoSScore[i] := QoSScore[i] + (MtxServices[i, j]  

QoSConstraints.QoSWeight); 

   j:= j +1; 

  endfor  

5:    i:= i +1; 

end for   

End 

In line 3, we calculate for each candidate Web service the 

normalized value of each QoS attribute.   

In line 4, we calculate for each candidate Web service the 

overall QoS score which is the sum of each normalized 

QoS value multiplied by the weight given in the service 

user request.  

6.3 QoS monitoring 

The QoS monitoring process aims to monitor and 

measure the QoS values in order to verify whether the 

measured values comply with QoS values published by 

the Web service provider. As it is mentioned in Section 

4.2, we distinguish two different types of QoS: The static 

and dynamic. The QoS monitoring process is interested 

in dynamic QoS monitoring, because QoS values are 

known only after the Web service execution.  

The QoS monitoring in the field of Web services has 

been studied by many addressed (e.g., [[37] [38] [39] 

[40] just to name a few). The authors of [37] introduce a 

QoS model which covers various dimensions of QoS, i.e. 

availability, accessibility, performance, reliability, 

security, and regulatory, and propose metrics to enhance 

QoS measurement on the service side. They realized the 

monitoring of QoS dimensions above through a 

monitoring extension of Java system application server 

developed in Java EE 5.0. In [38], the authors present a 

Probe-based Observability Mechanism required for the 

monitoring of the web services that facilitates 

observation of internal execution details of the web 

services during testing and execution. The authors in [39] 

carry out a research to develop a monitoring method for 

web services response time.  The method proposed in 
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this research is based on creating a proxy for connecting 

to the required Web service, and then calculating the 

Web services response time via the proxy. The work in 

[40] presents the Vienna Runtime Environment for 

Service-oriented Computing (VRESCo) that addresses 

some issues of current Web service technologies, with a 

special emphasis on service metadata, quality of service, 

service querying, dynamic binding and service 

mediation. The QoS monitoring is performed in their 

work to evaluate the framework through performance 

measurements on service querying, binding, mediation 

and invocation performances. 

According to these studies, QoS monitoring can be 

performed into two approaches: (1) Client-side 

monitoring: the measurement of QoS is run on the client 

side [39], (2) Server-side monitoring: the measurement 

of QoS is run on the server side [37] [40]. On one hand, 

client-side monitoring usually gives less accurate 

monitoring results and requires that clients must agree to 

install monitoring software which may not always be the 

case.  But on the other hand, server-side monitoring is 

usually accurate but requires access to the actual service 

implementation which is not always possible. 

In our work, we choose the use of a server-side 

monitoring mechanism, while ensuring that it does not 

affect existing implementations of the observed Web 

services. For this raison, our QoS monitoring mechanism 

is based on Windows Performance Counters (WPC) 

provided by Windows Communication Foundation 

(WCF) [41], which are part of the .NET Framework and 

offer a server-side QoS monitoring for Web services. 

Windows Performance Counters allow measuring the 

performance of Windows Communication Foundation 

Web services without altering any existing services. 

WPC supports a rich set of counters that can be 

measured during the execution time of Web services. 

Performance counters are scoped to three different levels: 

Service, Endpoint and Operation. Each of these levels 

has performance counters to analyse the performance of 

a hosted WCF Web service. Service performance 

counters measure the service behaviour as a whole and 

can be used to diagnose the performance of the whole 

service. They can be found under the 

ServiceModelService 4.0.0.0 performance object when 

viewed with Performance Monitor (Figure 6). 

In our work, we focus on the following counters: 

"Call Duration” counter to measure the execution time, 

"Calls Per Second” counter to measure the number of a 

Web service invocations, and "Failed Calls Per Second” 

counter to measure the number of a Web service failures. 

As depicted in figure 7, the way the QoS monitoring 

mechanism functions can be summarized as follows: 

- Initially, the QoS monitor has to be installed on the 

service provider host. QoS monitor is itself a 

service which captures the performance counters of 

the monitored web services. 

- Once installed, the QoS monitor has to be 

configured by setting the required parameters in the 

Web.config file. This configuration allows the 

operating system to attach the performance counters 

to the monitored web services. 

- By default, the Windows Performance Counters are 

turned off because they could significantly increase 

the memory footprint of the WCF application. 

Performance counters can be enabled for the service 

from the diagnostics section of the Web.config file, 

as shown in the following sample configuration: 

<configuration> 

  <system.serviceModel> 

    <diagnostics    

performanceCounters="All" />  

  </system.serviceModel> 

</configuration> 

To specify the web service we want to monitor, we 

need to add its name in the services section of the 

Web.config file as follows: 

<configuration> 

  <system.serviceModel> 

     <services> 

<service 

name="MonitoredServiceName" > 

        …… 

 </service> 

     </services> 

   </system.serviceModel> 

</configuration> 

- Once started, the QoS monitor constantly continues 

reading the current values of the performance 

counters (Call Duration, Calls Per Second, Failed 

Calls Per Second) and transmits them to the QoS 

aggregator component of the PrefWS3 system. The 

QoS monitor sends sequentially, to the QoS 

aggregator, a SOAP message containing 

information about the service provider, the 

monitored service and the corresponding measured 

performances.  

 
Figure 6: Windows Performance Counters: 

ServiceModelService Category. 
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- When the QoS aggregator component receives the 

performance counters values sent by the QoS 

monitor, it aggregates these values to calculate the 

execution time and the reliability of the monitored 

Web service. The performance counter  “Calls 

Duration" of the counter category 

“ServiceModelService 4.0.0.0" is used to calculate 

the execution time QoS, and the performance 

counters "Calls Per Second”,  "Failed Calls Per 

Second” of the same category are used to calculate 

the reliability QoS. 

- Finally, the measured QoS values are transmitted to 

the decision maker component. This latter compares 

the measured QoS values with the corresponding 

QoS values published by the Web service provider 

in the OWL-S repository. If the QoS values 

published do not comply with the measured QoS 

values then the service provider will be punished. 

Several forms of punishments have been proposed. 

In our work, we propose to temporarily exclude the 

web service whose QoS are not real. 

The QoS monitoring mechanism of the PrefWS3 

system makes use of Windows Performance Counters, 

which are integrated into the operating system and thus, 

representing an easy way to QoS monitoring. 

7 Rating and reputation mechanism 
Before paying the execution price of a Web service, the 

user is always looking to be sure of his choice. One of 

the mechanisms used to make the user have confidence 

in the selected web service is to give him the ratings of 

other users who have already used it. Once the web 

service is selected, the service user should provide a 

rating score to show the user satisfaction level of the 

invoked web service. A rating score is an integer number 

that ranges from 0 to 4, where the meaning of each value 

is as follows:  4: very satisfied, 3: satisfied, 2: neither 

satisfied or dissatisfied, 1: dissatisfied, 0: very 

dissatisfied. 

In existing Rating-based approaches, the satisfaction 

criterion of the rater is unknown. Without knowing the 

intendment of the rater, it is almost impossible to make 

sense of a given rating. For example, a service user may 

give a high rating to a Web service because its execution 

time is small. If the execution time is not significant for a 

second service user, then the first service user’s high 

rating will not be significant either. Hence, it is important 

to take into account the satisfaction criteria of each 

service user. This is done by giving a rate score for each 

QoS attribute of the used Web services.   

The user ratings are stored in an RDF triple store. As 

user ratings refer to a given service request, each Rating 

instance contains the service user who performed the 

rating, the rated service, the rating date, and finally the 

rating scores (one rating score per QoS attribute). New 

ratings from the same user for the same service replace 

older ratings. 

Over time, the qualities of a service can be changed 

by the service provider. In this case, old ratings are no 

longer representative. To address this problem, we give 

more importance to the recent ratings. This is done using 

Equation 2, where d is the number of days between the 

current date and the rating submission one. Figure 8 

shows the evolution of the rating value over the time 

where the initial value equals 3.  

UpdatedRate(S. QoSProperty)= 
𝑅𝑎𝑡𝑒(𝑆.QoSProperty)

log10(10+𝑑 )
     (2)  

The reputation score of a service S within a single 

QoS attribute is computed as the average of all ratings 

the service receives from service users for this QoS 

attribute as indicated in Equation 3, where N is the 

number of ratings for the service S. Each rating score is 

normalized, as a monotonically increasing criterion, to 

have a value in the range of 0 to 1. 

ReputationScore(S. QoSProperty) =

NormalizedValue(
∑ UpdatedRate(S.QoSProperty)

N
)      (3) 

The reputation score of a service within multiple 

QoS attributes is computed, by Equation 4, as the 

weighted sum of the rating score of each quality 

attribute.  

OverallReputationScore(S) =

 
∑ ReputationScore(S.QoSProperty)∗weight

∑ weight
          (4) 

 

Figure 7. QoS monitoring mechanism. 
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Figure 8: Example of the rating value evolution. 
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8 Evaluation 
In implementing PrefWS3, we use some software and 

tools. PrefWS3 is developed with Java under Eclipse IDE 

platform.  PrefWS3 makes use the OWL-S API [42] for 

OWL-S files parsing. Jena 2.2 [43] is used for reasoning 

on OWL.       

In order to evaluate the performance of our proposed 

semantic similarity algorithm which calculates the 

semantic similarity between a request and a web service, 

we compared it with two semantic matchmakers, the 

SAM architecture introduced in [15], and the BSA 

algorithm presented in [16].We use Book, Person and 

Printed Material ontology presented in [15], which is 

retrieved from “OWL-S Service Retrieval Test 

Collection version 2.1” available from the 

SemWebCentral Website2. In addition, we also used 

request and service definitions presented in the same 

work.  

As shown in Figure 9, Book, Person and Printed 

Material ontology contains information on printed 

material classification and related concepts such as 

publishers, readers, authors, book types and several other 

concepts. 

As the properties of the superclass are inherited by 

its subclasses, and in order to apply our algorithm, using 

the ontology described above, we assume that each 

subclass (or subconcept) in the ontology contains one 

more property than its superclass (superconcept). The 

request and the web services input/output parameters are 

given in Table 7. Request input concepts are Ordinary-

Publisher, Novel, and Paper-Back. Request output 

concepts are Local-Author and Genre.  
To demonstrate the value-added features of our 

semantic similarity algorithm, we present a test case 

between Request and Web Service 1 for input matching. 

The input parameters for Web Service 1, as shown in 

Table 7, are Publisher, ScienceFiction-Book. We 

calculated the semantic similarity using the ConceptSim 

function. 

By applying the InputsSim algorithm, input concepts 

in both request and Web service 1 are matched as 

follows: 

- Ordinary-Publisher  Publisher: ConceptSim = 1, 

since: Ordinary-Publisher < Publisher.  

- Novel  ScienceFictionBook: 

ConceptSim =  
Size(prop(Novel)prop(ScienceFictionBook))

Size(prop(Novel)prop(ScienceFictionBook))
  = 

4

6
 = 0.666, since: 

Novel <> ScienceFictionBook. 

- Paper-Back: No match 

                                                           
2 http://projects.semwebcentral.org 

 

- Paper-Back is an extra input of a request, so it can be 

ignored and thus, the InputSim(Request, Web Service 

1) = (1+0.666)/2 = 0.833 

Results of the input-output similarity calculation of 

all services in the test case are listed in Table 8.  

Service 2 is found to be the most similar to Request 

according to input matching, since it has the highest 

score for input matching of all the other classes. In fact, 

all the SAM, BSA, and PrefWS3 found this to be the best 

matched service in input matching with a score of 0.4388 

by SAM, a score of 0.77 by BSA, and a score of 0.833 by 

PrefWS3. However, SAM, BSA, and PrefWS3 found the 

Service 2 has the weakest match outputs with scores of 

0.01447, 0.012, and 0.125 respectively. 

On the other hand, in PrefWS3, matching Request 

and Service 5 should give the highest score according to 

output matching since {Genre → Genre : ConceptSim = 

1} and {Local-Author → Publisher : ConceptSim = 

0.25}. Both SAM and BSA found this to be the best 

matched service for output matching and scored it as 

1.00018 by SAM, and 1.2565 by BSA.   

Furthermore, SAM and BSA found that Service 3 

has the weakest match for inputs, so this places it the 

latest in the rankings, which was also found as unrelated 

and scored as 0.541 by PrefWS3. 

All the SAM, BSA, and PrefWS3 found that Service 

3 and Service 4 have the same output matching scores. 

Thus, for Service 3 and Service 4, BSA orders the results 

according to the maximum value of input scores, whereas 

SAM uses a random selection. Finally, both the BSA and 

PrefWS3 found the order of total score to be: 

Service 5 > Service 1 > Service 4 > Service 2 > 

Service 3. 

The results reveal that, in both BSA and PrefWS3 

systems, Service 5 has the highest total score considering 

both input and output matching, and Service 2 has the 

lowest total score. As a conclusion, comparing the results 

given by PrefWS3 with those given by SAM and BSA, 

we note that PrefWS3 offers good results but with less 

calculation, and therefore less time.   

9 Conclusion  
In this article, we introduce a semantic web services 

discovery and selection system (PrefWS3). An advanced 

feature of PrefWS3 is that it performs the service 

discovery and selection based on the matching level of 

the service advertisements with the user requests in terms 

of both functional and non-functional parameters. 

PrefWS3 is considered to be a user-centric system which 

helps and guides users on formulating their requirements 

and preferences, and hence, allows to free consumers 

from time consuming human computer interactions and 

Web search. Additionally, PrefWS3 uses a translator to 

translate WSDL files into OWL-S and provides 

semantically enriched description. As a result, enhancing 

web services with a semantic description of their 

functionality will further improve their discovery and 

selection. PrefWS3 uses an efficient semantic-based 
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matching mechanism which calculates the semantic  

 
Figure 9: Book, Person and Printed Material ontology section. [15] 

Request/Service  

Name 

Inputs Outputs 

Request Ordinary-Publisher, Novel,  Paper-Back Local-Author, Genre 

Web Service 1 Publisher, ScienceFictionBook Author, Price 

Web Service 2 Book, Alternative- Publisher, Book-Type  Publisher, Price, Date 

Web Service 3 FantasyNovel, Author Price, Comic 

Web Service 4 Newspaper, Book-Type, Person  Review, Fantasy 

Web Service 5 Publication,  Book-Type, Reader Genre, Publisher 

Table 7: Request and Services parameters. 

Service 

name 

 

Scores of SAM Scores of BSA Scores of PrefWS3 

Input 

Sim  

Score 

Output

Sim 

Score 

Total 

Score 

Input  

Sim  

Score 

Output

Sim 

Score 

Total 

Score 

InputS

im  

Score 

Output

Sim 

Score 

Tota

l Score 

Service 1 0.35964 0.12229 0.21723 0.640 0.8571 0.7485 0.833 0.5 0.666 

Service 2 0.4388 0.01447 0.27771 0.77 0.012 0.391 0.833 0.125 0.479 

Service 3 0.18026 0.17033 0.08078 0.47 0.5076 
0.4888 

 
0.541 0.5 0.520 

Service 4 0.23636 0.12229 0.69465 0.5321 0.5076 
0.5198 

 
0.761 0.5 0.630 

Service 5 0.31718 1.00018 0.20024 0.575 1.2565 
0.9157 

 
0.75 0.625 0.687 

Table 8: Comparison of PrefWS3, SAM, and BSA based on input/output parameter matching. 

 

similarity between the request and the web service based 

on the concepts position in the ontology, the common 

properties between concepts, and also, either concept has 

annotated an input/output request parameter or an 

input/output web service parameter. Furthermore, 

PrefWS3 includes a QoS-aware process and provides a 

reputation mechanism that enables service users to 

evaluate the credibility of the web services they use, and 

takes into account the satisfaction criteria of each service 

user. In order to evaluate the effectiveness of our system, 

the results of a comparison of the PrefWS3 and some 

other published approaches (BSA and SAM) have been 

presented. 
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As future directions, we plan to incorporate the Web 

services composition into PrefWS3 in order to make it 

more practical in real-world applications. To this end, 

two main questions need to be asked: 

1) How to combine Web services in a suitable way to 

fulfil the user request?  

To answer this question, several approaches have 

been proposed such as: Constraint based composition, 

Business rule driven composition, AI Planning based 

composition, Context information based composition, 

Process based composition, and Model and aspect driven 

composition [44]. AI Planning approach has become 

interesting due to the maturity that the planning area has 

achieved in AI. We decide to extend our PrefWS3 

system to support service composition by combining 

semantic matching and an AI planning technique. We 

focus on functional input and output parameters of Web 

services. The latter are respectively the preconditions and 

the effects in the planning context. Web service 

composition is then viewed as an AI planning based 

composition of semantic relationships between Web 

service parameters. To this end, we intend to adapt the 

functional matching mechanism of the PrefWS3 system 

to support semantic similarities between input and output 

parameters, and add a composition component that 

implements an AI planning technique.              

2) How to select the best composition among a set of 

candidates that fulfil the same user request? 

It is possible that the composition mechanism 

generates multiple composite services fulfilling the user 

request. In that case, the composite services are evaluated 

and ranked along the non-functional parameters such as 

QoS and user constraints, and the best composite service 

is the one which is ranked on top. Selecting a composite 

service that satisfies user constraints and preferences can 

be viewed as a Constraint Satisfaction Problem (CSP). 

To this end, we intend to formulate QoS based web 

service composition as a CSP, and adapt our QoS 

computing mechanism to compute the quality of a 

composite service when it is given the QoS of its 

underlying services. 
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